magnesy neodymowe

Co to są magnesy neodymowe? Poszukujesz mocnych neodymowych magnesów o średnicy 10 mm? Wykaz wszystkich dostępnych towarów można znaleźć na poniższym wykazie poznaj ofertę magnesów

magnesy do poszukiwań w wodzie F200 POWER z silnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM neodymowy magnes do poszukiwań? Magnetyczne uchwyty w solidnej i szczelnej stalowej obudowie idealnie nadają się do stosowania w niedogodnych, ciężkich warunkach pogodowych, w tym również w czasie opadów śniegu i deszczu poznaj ofertę

uchwyty magnetyczne

Magnetyczne uchwyty mogą być stosowane do ułatwienia produkcji, odkrywania wody lub do znajdowania meteorów ze złota. Mocowania to śruba 3x [M10] duża moc zobacz więcej informacji...

Ciesz się wysyłką zamówienia w dniu zakupu jeżeli zlecenie złożone jest przed 14:00 w dni robocze.

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 12x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010016

GTIN: 5906301810155

5.00

Średnica Ø

12 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

8.48 g

Kierunek magnesowania

↑ osiowy

Udźwig

4.83 kg / 47.41 N

Indukcja magnetyczna

531.09 mT / 5311 Gs

Powłoka

[NiCuNi] nikiel

3.03 z VAT / szt. + cena za transport

2.46 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
2.46 ZŁ
3.03 ZŁ
cena od 1920 szt.
2.21 ZŁ
2.72 ZŁ
cena od 3840 szt.
2.16 ZŁ
2.66 ZŁ
Masz frasunek zakupowy?

Dzwoń do nas +48 22 499 98 98 ewentualnie napisz przez formularz kontaktowy przez naszą stronę.
Parametry a także budowę elementów magnetycznych zweryfikujesz dzięki naszemu modułowym kalkulatorze.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

MW 12x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka MW 12x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010016
GTIN 5906301810155
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 12 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 8.48 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 4.83 kg / 47.41 N
Indukcja magnetyczna ~ ? 531.09 mT / 5311 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 12x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [Min. - Max.] ? 12.2-12.6 kGs
remanencja Br [Min. - Max.] ? 1220-1260 T
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [Min. - Max.] ? 36-38 BH max MGOe
gęstość energii [Min. - Max.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Curie Temperatura TC 312 - 380 °C
Curie Temperatura TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅Cm
Siła wyginania 250 Mpa
Wytrzymałość na ściskanie 1000~1100 Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 106 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu neodymowego - dane

Poniższe dane stanowią rezultat analizy matematycznej. Wartości oparte są na algorytmach dla klasy NdFeB. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 12x10 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg) Status ryzyka
0 mm 5308 Gs
530.8 mT
4.83 kg / 4830.0 g
47.4 N
średnie ryzyko
1 mm 4424 Gs
442.4 mT
3.36 kg / 3355.3 g
32.9 N
średnie ryzyko
2 mm 3585 Gs
358.5 mT
2.20 kg / 2203.4 g
21.6 N
średnie ryzyko
3 mm 2857 Gs
285.7 mT
1.40 kg / 1399.2 g
13.7 N
niskie ryzyko
5 mm 1787 Gs
178.7 mT
0.55 kg / 547.8 g
5.4 N
niskie ryzyko
10 mm 622 Gs
62.2 mT
0.07 kg / 66.3 g
0.7 N
niskie ryzyko
15 mm 272 Gs
27.2 mT
0.01 kg / 12.7 g
0.1 N
niskie ryzyko
20 mm 141 Gs
14.1 mT
0.00 kg / 3.4 g
0.0 N
niskie ryzyko
30 mm 52 Gs
5.2 mT
0.00 kg / 0.5 g
0.0 N
niskie ryzyko
50 mm 13 Gs
1.3 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
Table 2: Równoległa siła obsunięcia (pion)
MW 12x10 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)
0 mm Stal (~0.2) 0.97 kg / 966.0 g
9.5 N
1 mm Stal (~0.2) 0.67 kg / 672.0 g
6.6 N
2 mm Stal (~0.2) 0.44 kg / 440.0 g
4.3 N
3 mm Stal (~0.2) 0.28 kg / 280.0 g
2.7 N
5 mm Stal (~0.2) 0.11 kg / 110.0 g
1.1 N
10 mm Stal (~0.2) 0.01 kg / 14.0 g
0.1 N
15 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 12x10 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
1.45 kg / 1449.0 g
14.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.97 kg / 966.0 g
9.5 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.48 kg / 483.0 g
4.7 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
2.42 kg / 2415.0 g
23.7 N
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 12x10 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.48 kg / 483.0 g
4.7 N
1 mm
25%
1.21 kg / 1207.5 g
11.8 N
2 mm
50%
2.42 kg / 2415.0 g
23.7 N
5 mm
100%
4.83 kg / 4830.0 g
47.4 N
10 mm
100%
4.83 kg / 4830.0 g
47.4 N
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 12x10 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 4.83 kg / 4830.0 g
47.4 N
OK
40 °C -2.2% 4.72 kg / 4723.7 g
46.3 N
OK
60 °C -4.4% 4.62 kg / 4617.5 g
45.3 N
OK
80 °C -6.6% 4.51 kg / 4511.2 g
44.3 N
100 °C -28.8% 3.44 kg / 3439.0 g
33.7 N
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 12x10 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 19.64 kg / 19641 g
192.7 N
5 928 Gs
N/A
1 mm 16.52 kg / 16525 g
162.1 N
9 736 Gs
14.87 kg / 14872 g
145.9 N
~0 Gs
2 mm 13.64 kg / 13644 g
133.9 N
8 847 Gs
12.28 kg / 12280 g
120.5 N
~0 Gs
3 mm 11.12 kg / 11118 g
109.1 N
7 986 Gs
10.01 kg / 10006 g
98.2 N
~0 Gs
5 mm 7.16 kg / 7161 g
70.3 N
6 410 Gs
6.45 kg / 6445 g
63.2 N
~0 Gs
10 mm 2.23 kg / 2228 g
21.9 N
3 575 Gs
2.00 kg / 2005 g
19.7 N
~0 Gs
20 mm 0.27 kg / 270 g
2.6 N
1 244 Gs
0.24 kg / 243 g
2.4 N
~0 Gs
50 mm 0.00 kg / 5 g
0.0 N
164 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 12x10 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 7.5 cm
Implant słuchowy 10 Gs (1.0 mT) 6.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 4.5 cm
Urządzenie mobilne 40 Gs (4.0 mT) 3.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 3.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.5 cm
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 12x10 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 24.27 km/h
(6.74 m/s)
0.19 J
30 mm 41.69 km/h
(11.58 m/s)
0.57 J
50 mm 53.82 km/h
(14.95 m/s)
0.95 J
100 mm 76.11 km/h
(21.14 m/s)
1.90 J
Tabela 9: Trwałość powłoki antykorozyjnej
MW 12x10 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Table 10: Dane konstrukcyjne (Flux)
MW 12x10 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 6 105 Mx 61.1 µWb
Współczynnik Pc 0.81 Wysoki (Stabilny)
Tabela 11: Fizyka poszukiwań podwodnych
MW 12x10 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 4.83 kg Standard
Woda (dno rzeki) 5.53 kg
(+0.70 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na Ścianie (Ześlizg)

*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.

2. Wpływ Grubości Blachy

*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.

3. Wytrzymałość Temperaturowa

*Dla materiału N38 granica bezpieczeństwa to 80°C.

Szybki konwerter jednostek
Udźwig magnesu

Pole magnetyczne
Jak rozdzielać?

Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.

STAY
MOVE
Zasady Bezpieczeństwa
Elektronika

Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.

Rozruszniki Serca

Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.

Nie dla dzieci

Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.

Kruchy materiał

Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.

Do czego użyć tego magnesu?

Sprawdzone zastosowania dla wymiaru 15x10x2 mm

Elektronika i Czujniki

Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.

Modelarstwo i Druk 3D

Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.

Meble i Fronty

Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.

Inne propozycje

Prezentowany produkt to bardzo silny magnes walcowy, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø12x10 mm gwarantuje optymalną moc. Komponent MW 12x10 / N38 cechuje się dokładnością ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 4.83 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest idealny do budowy silników elektrycznych, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się skupienie pola na małej powierzchni. Dzięki dużej mocy 47.41 N przy wadze zaledwie 8.48 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na delikatną strukturę spieku ceramicznego, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego precyzyjnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy NdFeB klasy N38 są odpowiednie do większości zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø12x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø12x10 mm, co przy wadze 8.48 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 47.41 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 8.48 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 12 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady oraz zalety magnesów z neodymu NdFeB.

Warto zwrócić uwagę, że obok ekstremalnej mocy, magnesy te cechują się następującymi plusami:

  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
  • Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
  • Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
  • Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.

Mimo zalet, posiadają też wady:

  • Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.

Wytrzymałość na oderwanie magnesu w warunkach idealnychco ma na to wpływ?

Siła oderwania została określona dla optymalnej konfiguracji, zakładającej:

  • przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
  • o przekroju nie mniejszej niż 10 mm
  • z powierzchnią idealnie równą
  • w warunkach bezszczelinowych (powierzchnia do powierzchni)
  • przy pionowym kierunku działania siły (kąt 90 stopni)
  • przy temperaturze ok. 20 stopni Celsjusza

Udźwig magnesu w użyciu – kluczowe czynniki

W rzeczywistych zastosowaniach, realna moc wynika z szeregu czynników, wymienionych od najważniejszych:

  • Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
  • Masywność podłoża – zbyt cienka blacha nie zamyka strumienia, przez co część mocy jest tracona na drugą stronę.
  • Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
  • Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
  • Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

* Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.

Wady oraz zalety magnesów z neodymu NdFeB.

Warto zwrócić uwagę, że obok ekstremalnej mocy, magnesy te cechują się następującymi plusami:

  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
  • Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
  • Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
  • Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.

Mimo zalet, posiadają też wady:

  • Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.

Wytrzymałość na oderwanie magnesu w warunkach idealnychco ma na to wpływ?

Siła oderwania została określona dla optymalnej konfiguracji, zakładającej:

  • przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
  • o przekroju nie mniejszej niż 10 mm
  • z powierzchnią idealnie równą
  • w warunkach bezszczelinowych (powierzchnia do powierzchni)
  • przy pionowym kierunku działania siły (kąt 90 stopni)
  • przy temperaturze ok. 20 stopni Celsjusza

Udźwig magnesu w użyciu – kluczowe czynniki

W rzeczywistych zastosowaniach, realna moc wynika z szeregu czynników, wymienionych od najważniejszych:

  • Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
  • Masywność podłoża – zbyt cienka blacha nie zamyka strumienia, przez co część mocy jest tracona na drugą stronę.
  • Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
  • Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
  • Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

* Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.

BHP przy magnesach

Limity termiczne

Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.

Moc przyciągania

Stosuj magnesy świadomie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.

Interferencja medyczna

Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić działanie implantu.

Zakaz zabawy

Magnesy neodymowe nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.

Elektronika precyzyjna

Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.

Ryzyko pęknięcia

Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.

Karty i dyski

Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).

Poważne obrażenia

Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.

Samozapłon

Pył generowany podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Reakcje alergiczne

Część populacji posiada uczulenie na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Sugerujemy noszenie rękawic bezlateksowych.

Safety First!

Dowiedz się więcej o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesami.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98