Magnesy neodymowe – najmocniejsze na rynku

Potrzebujesz silnego pola magnetycznego? Posiadamy w sprzedaży kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Są one idealne do użytku w domu, garażu oraz modelarstwa. Przejrzyj asortyment dostępne od ręki.

sprawdź cennik i wymiary

Magnet fishing: solidne zestawy F200/F400

Odkryj pasję polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz wzmocnione liny są niezawodne w rzekach i jeziorach.

znajdź sprzęt do poszukiwań

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do mocowania bezinwazyjnego. Mocowania gwintowane (M8, M10, M12) zapewniają błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy instalacji oświetlenia, sensorów oraz banerów.

sprawdź zastosowania przemysłowe

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 2 dni

MW 12.5x2 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010014

GTIN/EAN: 5906301810131

5.00

Średnica Ø

12.5 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

1.84 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.42 kg / 13.89 N

Indukcja magnetyczna

188.88 mT / 1889 Gs

Powłoka

[NiCuNi] nikiel

0.935 z VAT / szt. + cena za transport

0.760 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.760 ZŁ
0.935 ZŁ
cena od 768 szt.
0.684 ZŁ
0.841 ZŁ
cena od 1536 szt.
0.669 ZŁ
0.823 ZŁ
Chcesz się targować?

Zadzwoń do nas +48 888 99 98 98 ewentualnie pisz za pomocą formularz zgłoszeniowy na stronie kontaktowej.
Udźwig i formę elementów magnetycznych zobaczysz dzięki naszemu kalkulatorze siły.

Zamów do 14:00, a wyślemy dziś!

Szczegółowa specyfikacja MW 12.5x2 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 12.5x2 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010014
GTIN/EAN 5906301810131
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 12.5 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 1.84 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.42 kg / 13.89 N
Indukcja magnetyczna ~ ? 188.88 mT / 1889 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 12.5x2 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza inżynierska magnesu - dane

Poniższe wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 12.5x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 1888 Gs
188.8 mT
1.42 kg / 1420.0 g
13.9 N
bezpieczny
1 mm 1703 Gs
170.3 mT
1.16 kg / 1155.6 g
11.3 N
bezpieczny
2 mm 1453 Gs
145.3 mT
0.84 kg / 840.3 g
8.2 N
bezpieczny
3 mm 1190 Gs
119.0 mT
0.56 kg / 564.1 g
5.5 N
bezpieczny
5 mm 752 Gs
75.2 mT
0.23 kg / 225.0 g
2.2 N
bezpieczny
10 mm 241 Gs
24.1 mT
0.02 kg / 23.2 g
0.2 N
bezpieczny
15 mm 96 Gs
9.6 mT
0.00 kg / 3.7 g
0.0 N
bezpieczny
20 mm 46 Gs
4.6 mT
0.00 kg / 0.9 g
0.0 N
bezpieczny
30 mm 15 Gs
1.5 mT
0.00 kg / 0.1 g
0.0 N
bezpieczny
50 mm 4 Gs
0.4 mT
0.00 kg / 0.0 g
0.0 N
bezpieczny

Tabela 2: Równoległa siła obsunięcia (pion)
MW 12.5x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.28 kg / 284.0 g
2.8 N
1 mm Stal (~0.2) 0.23 kg / 232.0 g
2.3 N
2 mm Stal (~0.2) 0.17 kg / 168.0 g
1.6 N
3 mm Stal (~0.2) 0.11 kg / 112.0 g
1.1 N
5 mm Stal (~0.2) 0.05 kg / 46.0 g
0.5 N
10 mm Stal (~0.2) 0.00 kg / 4.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 12.5x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.43 kg / 426.0 g
4.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.28 kg / 284.0 g
2.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.14 kg / 142.0 g
1.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.71 kg / 710.0 g
7.0 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 12.5x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.14 kg / 142.0 g
1.4 N
1 mm
25%
0.36 kg / 355.0 g
3.5 N
2 mm
50%
0.71 kg / 710.0 g
7.0 N
5 mm
100%
1.42 kg / 1420.0 g
13.9 N
10 mm
100%
1.42 kg / 1420.0 g
13.9 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 12.5x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 1.42 kg / 1420.0 g
13.9 N
OK
40 °C -2.2% 1.39 kg / 1388.8 g
13.6 N
OK
60 °C -4.4% 1.36 kg / 1357.5 g
13.3 N
80 °C -6.6% 1.33 kg / 1326.3 g
13.0 N
100 °C -28.8% 1.01 kg / 1011.0 g
9.9 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 12.5x2 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 2.70 kg / 2698 g
26.5 N
3 338 Gs
N/A
1 mm 2.47 kg / 2474 g
24.3 N
3 616 Gs
2.23 kg / 2226 g
21.8 N
~0 Gs
2 mm 2.20 kg / 2195 g
21.5 N
3 407 Gs
1.98 kg / 1976 g
19.4 N
~0 Gs
3 mm 1.89 kg / 1894 g
18.6 N
3 165 Gs
1.71 kg / 1705 g
16.7 N
~0 Gs
5 mm 1.32 kg / 1318 g
12.9 N
2 640 Gs
1.19 kg / 1187 g
11.6 N
~0 Gs
10 mm 0.43 kg / 428 g
4.2 N
1 503 Gs
0.38 kg / 385 g
3.8 N
~0 Gs
20 mm 0.04 kg / 44 g
0.4 N
483 Gs
0.04 kg / 40 g
0.4 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
51 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 12.5x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Pilot do auta 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 12.5x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 28.30 km/h
(7.86 m/s)
0.06 J
30 mm 48.53 km/h
(13.48 m/s)
0.17 J
50 mm 62.65 km/h
(17.40 m/s)
0.28 J
100 mm 88.60 km/h
(24.61 m/s)
0.56 J

Tabela 9: Odporność na korozję
MW 12.5x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MW 12.5x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 810 Mx 28.1 µWb
Współczynnik Pc 0.24 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 12.5x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.42 kg Standard
Woda (dno rzeki) 1.63 kg
(+0.21 kg Zysk z wyporności)
+14.5%
Ostrzeżenie: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Ześlizg (ściana)

*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły prostopadłej.

2. Efektywność, a grubość stali

*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.

3. Praca w cieple

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010014-2025
Przelicznik magnesów
Siła oderwania

Indukcja magnetyczna

Zobacz też inne produkty

Prezentowany produkt to niezwykle mocny magnes walcowy, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø12.5x2 mm gwarantuje optymalną moc. Komponent MW 12.5x2 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o dużej sile (ok. 1.42 kg), produkt ten jest dostępny natychmiast z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Dodatkowo, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 13.89 N przy wadze zaledwie 1.84 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na kruchość materiału NdFeB, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego profesjonalnego komponentu. Dla zapewnienia stabilności w przemyśle, stosuje się żywice anaerobowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy N38 są odpowiednie do większości zastosowań w automatyce i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø12.5x2), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø12.5x2 mm, co przy wadze 1.84 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.42 kg (siła ~13.89 N), co przy tak kompaktowych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 12.5 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Zalety

Warto zwrócić uwagę, że obok wysokiej siły, magnesy te wyróżniają się następującymi zaletami:
  • Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
  • Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
  • Dzięki powłoce (NiCuNi, Au, Ag) mają estetyczny, błyszczący wygląd.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
  • Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.

Ograniczenia

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.

Charakterystyka udźwigu

Wytrzymałość na oderwanie magnesu w warunkach idealnychod czego zależy?

Deklarowana siła magnesu odnosi się do maksymalnych osiągów, zarejestrowanej w środowisku optymalnym, a mianowicie:
  • z użyciem płyty ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
  • której wymiar poprzeczny sięga przynajmniej 10 mm
  • charakteryzującej się równą strukturą
  • bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
  • przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
  • w neutralnych warunkach termicznych

Wpływ czynników na nośność magnesu w praktyce

Warto wiedzieć, iż siła w aplikacji będzie inne zależnie od następujących czynników, zaczynając od najistotniejszych:
  • Dystans – obecność ciała obcego (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
  • Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
  • Materiał blachy – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
  • Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
  • Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.

Udźwig mierzono stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą redukuje siłę trzymania.

Zasady BHP dla użytkowników magnesów
Uwaga: zadławienie

Silne magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.

Pole magnetyczne a elektronika

Bardzo silne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.

Rozruszniki serca

Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.

Elektronika precyzyjna

Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.

Niebezpieczeństwo przytrzaśnięcia

Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.

Reakcje alergiczne

Pewna grupa użytkowników posiada nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może skutkować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.

Ryzyko pęknięcia

Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.

Bezpieczna praca

Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.

Temperatura pracy

Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.

Zakaz obróbki

Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.

Zagrożenie! Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98