MW 10x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010013
GTIN/EAN: 5906301810124
Średnica Ø
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
4.71 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.38 kg / 33.16 N
Indukcja magnetyczna
525.10 mT / 5251 Gs
Powłoka
[NiCuNi] nikiel
2.18 ZŁ z VAT / szt. + cena za transport
1.770 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub napisz korzystając z
formularz zapytania
na naszej stronie.
Udźwig i wygląd magnesu wyliczysz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne - MW 10x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010013 |
| GTIN/EAN | 5906301810124 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 4.71 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.38 kg / 33.16 N |
| Indukcja magnetyczna ~ ? | 525.10 mT / 5251 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości są bezpośredni efekt symulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5247 Gs
524.7 mT
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
uwaga |
| 1 mm |
4204 Gs
420.4 mT
|
2.17 kg / 4.78 lbs
2169.6 g / 21.3 N
|
uwaga |
| 2 mm |
3243 Gs
324.3 mT
|
1.29 kg / 2.85 lbs
1291.0 g / 12.7 N
|
słaby uchwyt |
| 3 mm |
2454 Gs
245.4 mT
|
0.74 kg / 1.63 lbs
739.6 g / 7.3 N
|
słaby uchwyt |
| 5 mm |
1403 Gs
140.3 mT
|
0.24 kg / 0.53 lbs
241.5 g / 2.4 N
|
słaby uchwyt |
| 10 mm |
428 Gs
42.8 mT
|
0.02 kg / 0.05 lbs
22.5 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
177 Gs
17.7 mT
|
0.00 kg / 0.01 lbs
3.8 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
676.0 g / 6.6 N
|
| 1 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
258.0 g / 2.5 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.01 kg / 2.24 lbs
1014.0 g / 9.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.68 kg / 1.49 lbs
676.0 g / 6.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.69 kg / 3.73 lbs
1690.0 g / 16.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| 1 mm |
|
0.85 kg / 1.86 lbs
845.0 g / 8.3 N
|
| 2 mm |
|
1.69 kg / 3.73 lbs
1690.0 g / 16.6 N
|
| 3 mm |
|
2.54 kg / 5.59 lbs
2535.0 g / 24.9 N
|
| 5 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 10 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 11 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
| 12 mm |
|
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.38 kg / 7.45 lbs
3380.0 g / 33.2 N
|
OK |
| 40 °C | -2.2% |
3.31 kg / 7.29 lbs
3305.6 g / 32.4 N
|
OK |
| 60 °C | -4.4% |
3.23 kg / 7.12 lbs
3231.3 g / 31.7 N
|
OK |
| 80 °C | -6.6% |
3.16 kg / 6.96 lbs
3156.9 g / 31.0 N
|
|
| 100 °C | -28.8% |
2.41 kg / 5.31 lbs
2406.6 g / 23.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 10x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.33 kg / 29.39 lbs
5 906 Gs
|
2.00 kg / 4.41 lbs
2000 g / 19.6 N
|
N/A |
| 1 mm |
10.82 kg / 23.85 lbs
9 454 Gs
|
1.62 kg / 3.58 lbs
1623 g / 15.9 N
|
9.74 kg / 21.47 lbs
~0 Gs
|
| 2 mm |
8.56 kg / 18.86 lbs
8 408 Gs
|
1.28 kg / 2.83 lbs
1284 g / 12.6 N
|
7.70 kg / 16.98 lbs
~0 Gs
|
| 3 mm |
6.65 kg / 14.65 lbs
7 410 Gs
|
1.00 kg / 2.20 lbs
997 g / 9.8 N
|
5.98 kg / 13.19 lbs
~0 Gs
|
| 5 mm |
3.86 kg / 8.52 lbs
5 650 Gs
|
0.58 kg / 1.28 lbs
580 g / 5.7 N
|
3.48 kg / 7.67 lbs
~0 Gs
|
| 10 mm |
0.95 kg / 2.10 lbs
2 805 Gs
|
0.14 kg / 0.32 lbs
143 g / 1.4 N
|
0.86 kg / 1.89 lbs
~0 Gs
|
| 20 mm |
0.09 kg / 0.20 lbs
857 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
101 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
42 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.13 km/h
(7.54 m/s)
|
0.13 J | |
| 30 mm |
46.80 km/h
(13.00 m/s)
|
0.40 J | |
| 50 mm |
60.41 km/h
(16.78 m/s)
|
0.66 J | |
| 100 mm |
85.43 km/h
(23.73 m/s)
|
1.33 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 183 Mx | 41.8 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.38 kg | Standard |
| Woda (dno rzeki) |
3.87 kg
(+0.49 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- której grubość to min. 10 mm
- charakteryzującej się gładkością
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Odstęp (między magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Łamliwość magnesów
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Uszkodzenia czujników
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Karty i dyski
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Ogromna siła
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
To nie jest zabawka
Te produkty magnetyczne nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Siła zgniatająca
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Niklowa powłoka a alergia
Pewna grupa użytkowników wykazuje alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać silną reakcję alergiczną. Zalecamy stosowanie rękawic bezlateksowych.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
