MW 10x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010013
GTIN/EAN: 5906301810124
Średnica Ø
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
4.71 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.38 kg / 33.16 N
Indukcja magnetyczna
525.10 mT / 5251 Gs
Powłoka
[NiCuNi] nikiel
2.18 ZŁ z VAT / szt. + cena za transport
1.770 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie zostaw wiadomość przez
formularz zgłoszeniowy
w sekcji kontakt.
Parametry a także formę magnesów wyliczysz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 10x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010013 |
| GTIN/EAN | 5906301810124 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 4.71 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.38 kg / 33.16 N |
| Indukcja magnetyczna ~ ? | 525.10 mT / 5251 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Przedstawione informacje stanowią rezultat symulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5247 Gs
524.7 mT
|
3.38 kg / 3380.0 g
33.2 N
|
uwaga |
| 1 mm |
4204 Gs
420.4 mT
|
2.17 kg / 2169.6 g
21.3 N
|
uwaga |
| 2 mm |
3243 Gs
324.3 mT
|
1.29 kg / 1291.0 g
12.7 N
|
słaby uchwyt |
| 3 mm |
2454 Gs
245.4 mT
|
0.74 kg / 739.6 g
7.3 N
|
słaby uchwyt |
| 5 mm |
1403 Gs
140.3 mT
|
0.24 kg / 241.5 g
2.4 N
|
słaby uchwyt |
| 10 mm |
428 Gs
42.8 mT
|
0.02 kg / 22.5 g
0.2 N
|
słaby uchwyt |
| 15 mm |
177 Gs
17.7 mT
|
0.00 kg / 3.8 g
0.0 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 1.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.68 kg / 676.0 g
6.6 N
|
| 1 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 258.0 g
2.5 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.01 kg / 1014.0 g
9.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.68 kg / 676.0 g
6.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.34 kg / 338.0 g
3.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.69 kg / 1690.0 g
16.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.34 kg / 338.0 g
3.3 N
|
| 1 mm |
|
0.85 kg / 845.0 g
8.3 N
|
| 2 mm |
|
1.69 kg / 1690.0 g
16.6 N
|
| 5 mm |
|
3.38 kg / 3380.0 g
33.2 N
|
| 10 mm |
|
3.38 kg / 3380.0 g
33.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.38 kg / 3380.0 g
33.2 N
|
OK |
| 40 °C | -2.2% |
3.31 kg / 3305.6 g
32.4 N
|
OK |
| 60 °C | -4.4% |
3.23 kg / 3231.3 g
31.7 N
|
OK |
| 80 °C | -6.6% |
3.16 kg / 3156.9 g
31.0 N
|
|
| 100 °C | -28.8% |
2.41 kg / 2406.6 g
23.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 10x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
13.33 kg / 13331 g
130.8 N
5 906 Gs
|
N/A |
| 1 mm |
10.82 kg / 10820 g
106.1 N
9 454 Gs
|
9.74 kg / 9738 g
95.5 N
~0 Gs
|
| 2 mm |
8.56 kg / 8557 g
83.9 N
8 408 Gs
|
7.70 kg / 7701 g
75.5 N
~0 Gs
|
| 3 mm |
6.65 kg / 6646 g
65.2 N
7 410 Gs
|
5.98 kg / 5982 g
58.7 N
~0 Gs
|
| 5 mm |
3.86 kg / 3864 g
37.9 N
5 650 Gs
|
3.48 kg / 3478 g
34.1 N
~0 Gs
|
| 10 mm |
0.95 kg / 953 g
9.3 N
2 805 Gs
|
0.86 kg / 857 g
8.4 N
~0 Gs
|
| 20 mm |
0.09 kg / 89 g
0.9 N
857 Gs
|
0.08 kg / 80 g
0.8 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
101 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.13 km/h
(7.54 m/s)
|
0.13 J | |
| 30 mm |
46.80 km/h
(13.00 m/s)
|
0.40 J | |
| 50 mm |
60.41 km/h
(16.78 m/s)
|
0.66 J | |
| 100 mm |
85.43 km/h
(23.73 m/s)
|
1.33 J |
Tabela 9: Parametry powłoki (trwałość)
MW 10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 183 Mx | 41.8 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.38 kg | Standard |
| Woda (dno rzeki) |
3.87 kg
(+0.49 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- o wypolerowanej powierzchni kontaktu
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża siłę trzymania.
BHP przy magnesach
Zagrożenie życia
Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować działanie implantu.
Ryzyko złamań
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Uczulenie na powłokę
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Limity termiczne
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem dzieci i zwierząt.
Kruchy spiek
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Urządzenia elektroniczne
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
