MW 9.5x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010107
GTIN/EAN: 5906301811060
Średnica Ø
9.5 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.40 kg / 3.96 N
Indukcja magnetyczna
127.68 mT / 1277 Gs
Powłoka
[NiCuNi] nikiel
0.295 ZŁ z VAT / szt. + cena za transport
0.240 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub pisz poprzez
nasz formularz online
na stronie kontaktowej.
Siłę a także kształt magnesu obliczysz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MW 9.5x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 9.5x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010107 |
| GTIN/EAN | 5906301811060 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 9.5 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.53 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.40 kg / 3.96 N |
| Indukcja magnetyczna ~ ? | 127.68 mT / 1277 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Niniejsze dane są bezpośredni efekt symulacji matematycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
MW 9.5x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1276 Gs
127.6 mT
|
0.40 kg / 400.0 g
3.9 N
|
niskie ryzyko |
| 1 mm |
1129 Gs
112.9 mT
|
0.31 kg / 312.8 g
3.1 N
|
niskie ryzyko |
| 2 mm |
905 Gs
90.5 mT
|
0.20 kg / 201.0 g
2.0 N
|
niskie ryzyko |
| 3 mm |
683 Gs
68.3 mT
|
0.11 kg / 114.5 g
1.1 N
|
niskie ryzyko |
| 5 mm |
366 Gs
36.6 mT
|
0.03 kg / 32.9 g
0.3 N
|
niskie ryzyko |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 2.1 g
0.0 N
|
niskie ryzyko |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MW 9.5x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 62.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 9.5x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 120.0 g
1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 80.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 40.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.20 kg / 200.0 g
2.0 N
|
MW 9.5x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 40.0 g
0.4 N
|
| 1 mm |
|
0.10 kg / 100.0 g
1.0 N
|
| 2 mm |
|
0.20 kg / 200.0 g
2.0 N
|
| 5 mm |
|
0.40 kg / 400.0 g
3.9 N
|
| 10 mm |
|
0.40 kg / 400.0 g
3.9 N
|
MW 9.5x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.40 kg / 400.0 g
3.9 N
|
OK |
| 40 °C | -2.2% |
0.39 kg / 391.2 g
3.8 N
|
OK |
| 60 °C | -4.4% |
0.38 kg / 382.4 g
3.8 N
|
|
| 80 °C | -6.6% |
0.37 kg / 373.6 g
3.7 N
|
|
| 100 °C | -28.8% |
0.28 kg / 284.8 g
2.8 N
|
MW 9.5x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.71 kg / 712 g
7.0 N
2 403 Gs
|
N/A |
| 1 mm |
0.65 kg / 648 g
6.4 N
2 436 Gs
|
0.58 kg / 583 g
5.7 N
~0 Gs
|
| 2 mm |
0.56 kg / 557 g
5.5 N
2 257 Gs
|
0.50 kg / 501 g
4.9 N
~0 Gs
|
| 3 mm |
0.46 kg / 455 g
4.5 N
2 041 Gs
|
0.41 kg / 410 g
4.0 N
~0 Gs
|
| 5 mm |
0.27 kg / 273 g
2.7 N
1 580 Gs
|
0.25 kg / 246 g
2.4 N
~0 Gs
|
| 10 mm |
0.06 kg / 59 g
0.6 N
732 Gs
|
0.05 kg / 53 g
0.5 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
183 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 9.5x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 9.5x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.80 km/h
(7.72 m/s)
|
0.02 J | |
| 30 mm |
47.99 km/h
(13.33 m/s)
|
0.05 J | |
| 50 mm |
61.95 km/h
(17.21 m/s)
|
0.08 J | |
| 100 mm |
87.61 km/h
(24.34 m/s)
|
0.16 J |
MW 9.5x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 9.5x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 184 Mx | 11.8 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
MW 9.5x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.40 kg | Standard |
| Woda (dno rzeki) |
0.46 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- z powierzchnią idealnie równą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy pionowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza udźwig.
Zagrożenie fizyczne
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Produkt nie dla dzieci
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Uczulenie na powłokę
Część populacji ma uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może skutkować wysypkę. Rekomendujemy stosowanie rękawic bezlateksowych.
Wpływ na smartfony
Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Implanty medyczne
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
Bezpieczny dystans
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Maksymalna temperatura
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Podatność na pękanie
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Ryzyko pożaru
Pył generowany podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
