MW 9.5x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010107
GTIN: 5906301811060
Średnica Ø
9.5 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.40 kg / 3.96 N
Indukcja magnetyczna
127.68 mT / 1277 Gs
Powłoka
[NiCuNi] nikiel
0.295 ZŁ z VAT / szt. + cena za transport
0.240 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń do nas
+48 22 499 98 98
lub pisz poprzez
nasz formularz online
na stronie kontaktowej.
Siłę i kształt elementów magnetycznych zobaczysz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 9.5x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 9.5x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010107 |
| GTIN | 5906301811060 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 9.5 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.53 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.40 kg / 3.96 N |
| Indukcja magnetyczna ~ ? | 127.68 mT / 1277 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Przedstawione informacje stanowią wynik analizy fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
MW 9.5x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1276 Gs
127.6 mT
|
0.40 kg / 400.0 g
3.9 N
|
słaby uchwyt |
| 1 mm |
1129 Gs
112.9 mT
|
0.31 kg / 312.8 g
3.1 N
|
słaby uchwyt |
| 2 mm |
905 Gs
90.5 mT
|
0.20 kg / 201.0 g
2.0 N
|
słaby uchwyt |
| 3 mm |
683 Gs
68.3 mT
|
0.11 kg / 114.5 g
1.1 N
|
słaby uchwyt |
| 5 mm |
366 Gs
36.6 mT
|
0.03 kg / 32.9 g
0.3 N
|
słaby uchwyt |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 2.1 g
0.0 N
|
słaby uchwyt |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 9.5x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 62.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 9.5x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.12 kg / 120.0 g
1.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.08 kg / 80.0 g
0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 40.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.20 kg / 200.0 g
2.0 N
|
MW 9.5x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 40.0 g
0.4 N
|
| 1 mm |
|
0.10 kg / 100.0 g
1.0 N
|
| 2 mm |
|
0.20 kg / 200.0 g
2.0 N
|
| 5 mm |
|
0.40 kg / 400.0 g
3.9 N
|
| 10 mm |
|
0.40 kg / 400.0 g
3.9 N
|
MW 9.5x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.40 kg / 400.0 g
3.9 N
|
OK |
| 40 °C | -2.2% |
0.39 kg / 391.2 g
3.8 N
|
OK |
| 60 °C | -4.4% |
0.38 kg / 382.4 g
3.8 N
|
|
| 80 °C | -6.6% |
0.37 kg / 373.6 g
3.7 N
|
|
| 100 °C | -28.8% |
0.28 kg / 284.8 g
2.8 N
|
MW 9.5x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.71 kg / 712 g
7.0 N
2 403 Gs
|
N/A |
| 1 mm |
0.65 kg / 648 g
6.4 N
2 436 Gs
|
0.58 kg / 583 g
5.7 N
~0 Gs
|
| 2 mm |
0.56 kg / 557 g
5.5 N
2 257 Gs
|
0.50 kg / 501 g
4.9 N
~0 Gs
|
| 3 mm |
0.46 kg / 455 g
4.5 N
2 041 Gs
|
0.41 kg / 410 g
4.0 N
~0 Gs
|
| 5 mm |
0.27 kg / 273 g
2.7 N
1 580 Gs
|
0.25 kg / 246 g
2.4 N
~0 Gs
|
| 10 mm |
0.06 kg / 59 g
0.6 N
732 Gs
|
0.05 kg / 53 g
0.5 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
183 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 9.5x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 9.5x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.80 km/h
(7.72 m/s)
|
0.02 J | |
| 30 mm |
47.99 km/h
(13.33 m/s)
|
0.05 J | |
| 50 mm |
61.95 km/h
(17.21 m/s)
|
0.08 J | |
| 100 mm |
87.61 km/h
(24.34 m/s)
|
0.16 J |
MW 9.5x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 9.5x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 184 Mx | 11.8 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
MW 9.5x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.40 kg | Standard |
| Woda (dno rzeki) |
0.46 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
Zobacz też inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się gładkością
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (pomiędzy magnesem a blachą), ponieważ nawet niewielka przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – za chuda blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Bezpieczna praca
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne zakłóca działanie czujników w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Siła zgniatająca
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Uwaga: zadławienie
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem dzieci i zwierząt.
Wpływ na zdrowie
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić działanie implantu.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Limity termiczne
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Ochrona oczu
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
