Silne magnesy neodymowe: płytkowe i walcowe

Szukasz potężnej mocy w małym rozmiarze? Oferujemy bogatą gamę magnesów o różnych kształtach i wymiarach. Są one idealne do zastosowań domowych, garażu oraz modelarstwa. Przejrzyj asortyment z szybką wysyłką.

zobacz pełną ofertę

Magnet fishing: solidne zestawy F200/F400

Rozpocznij przygodę związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Solidna, antykorozyjna obudowa oraz mocne linki są niezawodne w trudnych warunkach wodnych.

znajdź zestaw dla siebie

Niezawodne uchwyty z gwintem

Sprawdzone rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Są niezastąpione przy mocowaniu lamp, czujników oraz reklam.

zobacz zastosowania przemysłowe

🚚 Zamów do 14:00 – wyślemy tego samego dnia!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 9.5x1 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010107

GTIN/EAN: 5906301811060

5.00

Średnica Ø

9.5 mm [±0,1 mm]

Wysokość

1 mm [±0,1 mm]

Waga

0.53 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.40 kg / 3.96 N

Indukcja magnetyczna

127.68 mT / 1277 Gs

Powłoka

[NiCuNi] nikiel

0.295 z VAT / szt. + cena za transport

0.240 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.240 ZŁ
0.295 ZŁ
cena od 4000 szt.
0.216 ZŁ
0.266 ZŁ
cena od 8000 szt.
0.211 ZŁ
0.260 ZŁ
Chcesz lepszą cenę?

Skontaktuj się z nami telefonicznie +48 22 499 98 98 lub pisz poprzez nasz formularz online na stronie kontaktowej.
Siłę a także kształt magnesu obliczysz u nas w kalkulatorze magnetycznym.

Zamów do 14:00, a wyślemy dziś!

MW 9.5x1 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka MW 9.5x1 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010107
GTIN/EAN 5906301811060
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 9.5 mm [±0,1 mm]
Wysokość 1 mm [±0,1 mm]
Waga 0.53 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.40 kg / 3.96 N
Indukcja magnetyczna ~ ? 127.68 mT / 1277 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 9.5x1 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu - raport

Niniejsze dane są bezpośredni efekt symulacji matematycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 9.5x1 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 1276 Gs
127.6 mT
0.40 kg / 400.0 g
3.9 N
niskie ryzyko
1 mm 1129 Gs
112.9 mT
0.31 kg / 312.8 g
3.1 N
niskie ryzyko
2 mm 905 Gs
90.5 mT
0.20 kg / 201.0 g
2.0 N
niskie ryzyko
3 mm 683 Gs
68.3 mT
0.11 kg / 114.5 g
1.1 N
niskie ryzyko
5 mm 366 Gs
36.6 mT
0.03 kg / 32.9 g
0.3 N
niskie ryzyko
10 mm 92 Gs
9.2 mT
0.00 kg / 2.1 g
0.0 N
niskie ryzyko
15 mm 33 Gs
3.3 mT
0.00 kg / 0.3 g
0.0 N
niskie ryzyko
20 mm 15 Gs
1.5 mT
0.00 kg / 0.1 g
0.0 N
niskie ryzyko
30 mm 5 Gs
0.5 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
50 mm 1 Gs
0.1 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 9.5x1 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.08 kg / 80.0 g
0.8 N
1 mm Stal (~0.2) 0.06 kg / 62.0 g
0.6 N
2 mm Stal (~0.2) 0.04 kg / 40.0 g
0.4 N
3 mm Stal (~0.2) 0.02 kg / 22.0 g
0.2 N
5 mm Stal (~0.2) 0.01 kg / 6.0 g
0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 9.5x1 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.12 kg / 120.0 g
1.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.08 kg / 80.0 g
0.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.04 kg / 40.0 g
0.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.20 kg / 200.0 g
2.0 N
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 9.5x1 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.04 kg / 40.0 g
0.4 N
1 mm
25%
0.10 kg / 100.0 g
1.0 N
2 mm
50%
0.20 kg / 200.0 g
2.0 N
5 mm
100%
0.40 kg / 400.0 g
3.9 N
10 mm
100%
0.40 kg / 400.0 g
3.9 N
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 9.5x1 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 0.40 kg / 400.0 g
3.9 N
OK
40 °C -2.2% 0.39 kg / 391.2 g
3.8 N
OK
60 °C -4.4% 0.38 kg / 382.4 g
3.8 N
80 °C -6.6% 0.37 kg / 373.6 g
3.7 N
100 °C -28.8% 0.28 kg / 284.8 g
2.8 N
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 9.5x1 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 0.71 kg / 712 g
7.0 N
2 403 Gs
N/A
1 mm 0.65 kg / 648 g
6.4 N
2 436 Gs
0.58 kg / 583 g
5.7 N
~0 Gs
2 mm 0.56 kg / 557 g
5.5 N
2 257 Gs
0.50 kg / 501 g
4.9 N
~0 Gs
3 mm 0.46 kg / 455 g
4.5 N
2 041 Gs
0.41 kg / 410 g
4.0 N
~0 Gs
5 mm 0.27 kg / 273 g
2.7 N
1 580 Gs
0.25 kg / 246 g
2.4 N
~0 Gs
10 mm 0.06 kg / 59 g
0.6 N
732 Gs
0.05 kg / 53 g
0.5 N
~0 Gs
20 mm 0.00 kg / 4 g
0.0 N
183 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
16 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 9.5x1 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Czasomierz 20 Gs (2.0 mT) 2.0 cm
Urządzenie mobilne 40 Gs (4.0 mT) 1.5 cm
Pilot do auta 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 9.5x1 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 27.80 km/h
(7.72 m/s)
0.02 J
30 mm 47.99 km/h
(13.33 m/s)
0.05 J
50 mm 61.95 km/h
(17.21 m/s)
0.08 J
100 mm 87.61 km/h
(24.34 m/s)
0.16 J
Tabela 9: Parametry powłoki (trwałość)
MW 9.5x1 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Tabela 10: Dane konstrukcyjne (Strumień)
MW 9.5x1 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 184 Mx 11.8 µWb
Współczynnik Pc 0.16 Niski (Płaski)
Tabela 11: Fizyka poszukiwań podwodnych
MW 9.5x1 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.40 kg Standard
Woda (dno rzeki) 0.46 kg
(+0.06 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Ześlizg (ściana)

*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.

3. Praca w cieple

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010107-2025
Przelicznik magnesów
Siła oderwania

Moc pola

Inne propozycje

Prezentowany produkt to wyjątkowo silny magnes w kształcie walca, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø9.5x1 mm gwarantuje optymalną moc. Model MW 9.5x1 / N38 cechuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 0.40 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w typowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem sprawdza się w projektach DIY, zaawansowanej automatyce oraz szeroko pojętym przemyśle, służąc jako element pozycjonujący lub wykonawczy. Dzięki dużej mocy 3.96 N przy wadze zaledwie 0.53 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 9.5,1 mm) przy użyciu klejów epoksydowych. Dla zapewnienia stabilności w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najpopularniejszy standard dla profesjonalnych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz stabilność pracy. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø9.5x1), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø9.5x1 mm, co przy wadze 0.53 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 0.40 kg (siła ~3.96 N), co przy tak kompaktowych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten walec jest magnesowany osiowo (wzdłuż wysokości 1 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Zalety oraz wady magnesów z neodymu Nd2Fe14B.

Mocne strony
Poza niezwykłą wydajnością magnetyczną, magnesy typu NdFeB wnoszą dodatkowe korzyści::
  • Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
  • Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Dzięki powłoce (NiCuNi, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
  • Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Wady
Oto ograniczenia i wady, o których musisz wiedzieć:
  • Kruchość to ich słaba strona. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
  • Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
  • Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
  • Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.

Charakterystyka udźwigu

Najlepsza nośność magnesu w idealnych parametrachco się na to składa?
Deklarowana siła magnesu odnosi się do siły granicznej, którą uzyskano w środowisku optymalnym, a mianowicie:
  • przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
  • posiadającej masywność min. 10 mm aby uniknąć nasycenia
  • z powierzchnią idealnie równą
  • bez żadnej szczeliny pomiędzy magnesem a stalą
  • przy pionowym wektorze siły (kąt 90 stopni)
  • w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
W rzeczywistych zastosowaniach, faktyczna siła trzymania jest determinowana przez szeregu czynników, uszeregowanych od najbardziej istotnych:
  • Szczelina powietrzna (między magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
  • Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
  • Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
  • Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
  • Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.

Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza udźwig.

Instrukcja bezpiecznej obsługi magnesów
Zagrożenie fizyczne

Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Produkt nie dla dzieci

Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.

Świadome użytkowanie

Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.

Uczulenie na powłokę

Część populacji ma uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może skutkować wysypkę. Rekomendujemy stosowanie rękawic bezlateksowych.

Wpływ na smartfony

Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.

Implanty medyczne

Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać działanie implantu.

Bezpieczny dystans

Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.

Maksymalna temperatura

Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.

Podatność na pękanie

Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.

Ryzyko pożaru

Pył generowany podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.

Bezpieczeństwo! Szukasz szczegółów? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98