Magnesy neodymowe – najmocniejsze na rynku

Chcesz kupić naprawdę silne magnesy? Oferujemy bogatą gamę magnesów o różnych kształtach i wymiarach. To najlepszy wybór do zastosowań domowych, warsztatu oraz modelarstwa. Sprawdź naszą ofertę z szybką wysyłką.

zobacz cennik i wymiary

Zestawy do magnet fishing (poszukiwaczy)

Odkryj pasję polegającą na poszukiwaniu skarbów pod wodą! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz mocne linki są niezawodne w każdej wodzie.

znajdź swój magnes do wody

Magnetyczne systemy mocowań

Niezawodne rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (M8, M10, M12) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Idealnie nadają się przy instalacji lamp, czujników oraz reklam.

zobacz dostępne gwinty

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 8x8 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010106

GTIN/EAN: 5906301811053

5.00

Średnica Ø

8 mm [±0,1 mm]

Wysokość

8 mm [±0,1 mm]

Waga

3.02 g

Kierunek magnesowania

↑ osiowy

Udźwig

2.03 kg / 19.92 N

Indukcja magnetyczna

553.67 mT / 5537 Gs

Powłoka

[NiCuNi] nikiel

1.341 z VAT / szt. + cena za transport

1.090 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
1.090 ZŁ
1.341 ZŁ
cena od 600 szt.
1.025 ZŁ
1.260 ZŁ
cena od 2300 szt.
0.959 ZŁ
1.180 ZŁ
Nie jesteś pewien wyboru?

Zadzwoń do nas +48 22 499 98 98 albo pisz poprzez formularz zgłoszeniowy przez naszą stronę.
Masę i wygląd magnesów neodymowych obliczysz w naszym kalkulatorze masy magnetycznej.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Parametry techniczne - MW 8x8 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 8x8 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010106
GTIN/EAN 5906301811053
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 8 mm [±0,1 mm]
Wysokość 8 mm [±0,1 mm]
Waga 3.02 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 2.03 kg / 19.92 N
Indukcja magnetyczna ~ ? 553.67 mT / 5537 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 8x8 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja techniczna magnesu neodymowego - dane

Przedstawione dane stanowią wynik symulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 8x8 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 5531 Gs
553.1 mT
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
średnie ryzyko
1 mm 4162 Gs
416.2 mT
1.15 kg / 2.53 lbs
1149.3 g / 11.3 N
słaby uchwyt
2 mm 2984 Gs
298.4 mT
0.59 kg / 1.30 lbs
590.7 g / 5.8 N
słaby uchwyt
3 mm 2107 Gs
210.7 mT
0.29 kg / 0.65 lbs
294.5 g / 2.9 N
słaby uchwyt
5 mm 1084 Gs
108.4 mT
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
słaby uchwyt
10 mm 296 Gs
29.6 mT
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
słaby uchwyt
15 mm 118 Gs
11.8 mT
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
słaby uchwyt
20 mm 58 Gs
5.8 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
słaby uchwyt
30 mm 20 Gs
2.0 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt
50 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt

Tabela 2: Siła równoległa ześlizgu (ściana)
MW 8x8 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.41 kg / 0.90 lbs
406.0 g / 4.0 N
1 mm Stal (~0.2) 0.23 kg / 0.51 lbs
230.0 g / 2.3 N
2 mm Stal (~0.2) 0.12 kg / 0.26 lbs
118.0 g / 1.2 N
3 mm Stal (~0.2) 0.06 kg / 0.13 lbs
58.0 g / 0.6 N
5 mm Stal (~0.2) 0.02 kg / 0.04 lbs
16.0 g / 0.2 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 8x8 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.61 kg / 1.34 lbs
609.0 g / 6.0 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.41 kg / 0.90 lbs
406.0 g / 4.0 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.20 kg / 0.45 lbs
203.0 g / 2.0 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
1.02 kg / 2.24 lbs
1015.0 g / 10.0 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 8x8 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.20 kg / 0.45 lbs
203.0 g / 2.0 N
1 mm
25%
0.51 kg / 1.12 lbs
507.5 g / 5.0 N
2 mm
50%
1.02 kg / 2.24 lbs
1015.0 g / 10.0 N
3 mm
75%
1.52 kg / 3.36 lbs
1522.5 g / 14.9 N
5 mm
100%
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
10 mm
100%
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
11 mm
100%
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
12 mm
100%
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 8x8 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
OK
40 °C -2.2% 1.99 kg / 4.38 lbs
1985.3 g / 19.5 N
OK
60 °C -4.4% 1.94 kg / 4.28 lbs
1940.7 g / 19.0 N
OK
80 °C -6.6% 1.90 kg / 4.18 lbs
1896.0 g / 18.6 N
100 °C -28.8% 1.45 kg / 3.19 lbs
1445.4 g / 14.2 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 8x8 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 9.48 kg / 20.90 lbs
6 000 Gs
1.42 kg / 3.14 lbs
1422 g / 14.0 N
N/A
1 mm 7.26 kg / 16.01 lbs
9 682 Gs
1.09 kg / 2.40 lbs
1089 g / 10.7 N
6.54 kg / 14.41 lbs
~0 Gs
2 mm 5.37 kg / 11.83 lbs
8 324 Gs
0.81 kg / 1.78 lbs
805 g / 7.9 N
4.83 kg / 10.65 lbs
~0 Gs
3 mm 3.88 kg / 8.55 lbs
7 074 Gs
0.58 kg / 1.28 lbs
582 g / 5.7 N
3.49 kg / 7.69 lbs
~0 Gs
5 mm 1.95 kg / 4.30 lbs
5 016 Gs
0.29 kg / 0.64 lbs
292 g / 2.9 N
1.75 kg / 3.87 lbs
~0 Gs
10 mm 0.36 kg / 0.80 lbs
2 169 Gs
0.05 kg / 0.12 lbs
55 g / 0.5 N
0.33 kg / 0.72 lbs
~0 Gs
20 mm 0.03 kg / 0.06 lbs
592 Gs
0.00 kg / 0.01 lbs
4 g / 0.0 N
0.02 kg / 0.05 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
66 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
41 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
27 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
14 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 8x8 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 5.5 cm
Implant słuchowy 10 Gs (1.0 mT) 4.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Pilot do auta 50 Gs (5.0 mT) 2.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 8x8 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 26.19 km/h
(7.28 m/s)
0.08 J
30 mm 45.29 km/h
(12.58 m/s)
0.24 J
50 mm 58.47 km/h
(16.24 m/s)
0.40 J
100 mm 82.68 km/h
(22.97 m/s)
0.80 J

Tabela 9: Trwałość powłoki antykorozyjnej
MW 8x8 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MW 8x8 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 868 Mx 28.7 µWb
Współczynnik Pc 0.89 Wysoki (Stabilny)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 8x8 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 2.03 kg Standard
Woda (dno rzeki) 2.32 kg
(+0.29 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Siła zsuwająca

*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.

2. Grubość podłoża

*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.

3. Wytrzymałość temperaturowa

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010106-2026
Szybki konwerter jednostek
Udźwig magnesu

Moc pola

Zobacz też inne oferty

Prezentowany produkt to niezwykle mocny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø8x8 mm gwarantuje najwyższą gęstość energii. Model MW 8x8 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla najbardziej wymagających inżynierów i konstruktorów. Jako magnes cylindryczny o dużej sile (ok. 2.03 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych sensorów Halla oraz wydajnych filtrów, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 19.92 N przy wadze zaledwie 3.02 g, ten magnes cylindryczny jest niezastąpiony w elektronice oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na kruchość materiału NdFeB, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego profesjonalnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najczęściej wybierany standard dla przemysłowych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz wysoką odporność na demagnetyzację. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø8x8), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym sklepie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 8 mm i wysokość 8 mm. Wartość 19.92 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 3.02 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 8 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady oraz zalety magnesów neodymowych Nd2Fe14B.

Mocne strony

Należy pamiętać, iż obok wysokiej mocy, magnesy te wyróżniają się następującymi zaletami:
  • Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
  • Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
  • Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
  • Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
  • Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
  • Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.

Minusy

Mimo zalet, posiadają też wady:
  • Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
  • Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
  • Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.

Analiza siły trzymania

Najlepsza nośność magnesu w idealnych parametrachco się na to składa?

Podany w tabeli udźwig jest rezultatem pomiaru zrealizowanego w specyficznych, idealnych warunkach:
  • z użyciem blachy ze miękkiej stali, która służy jako element zamykający obwód
  • której grubość sięga przynajmniej 10 mm
  • z powierzchnią idealnie równą
  • przy bezpośrednim styku (brak powłok)
  • dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
  • przy temperaturze pokojowej

Kluczowe elementy wpływające na udźwig

Trzeba mieć na uwadze, że siła w aplikacji może być niższe pod wpływem następujących czynników, zaczynając od najistotniejszych:
  • Dystans – obecność ciała obcego (farba, brud, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
  • Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość blachy – zbyt cienka stal nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
  • Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
  • Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
  • Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.

Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.

BHP przy magnesach
Zakaz obróbki

Proszek generowany podczas szlifowania magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Ryzyko pęknięcia

Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.

Zasady obsługi

Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.

Uwaga: zadławienie

Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.

Implanty medyczne

Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.

Uszkodzenia ciała

Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Elektronika precyzyjna

Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.

Temperatura pracy

Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.

Reakcje alergiczne

Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.

Nośniki danych

Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).

Safety First! Szczegółowe omówienie o ryzyku w artykule: Bezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98