MW 8x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010106
GTIN/EAN: 5906301811053
Średnica Ø
8 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
3.02 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.03 kg / 19.92 N
Indukcja magnetyczna
553.67 mT / 5537 Gs
Powłoka
[NiCuNi] nikiel
1.341 ZŁ z VAT / szt. + cena za transport
1.090 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo daj znać poprzez
formularz
na stronie kontakt.
Moc a także budowę magnesu neodymowego zweryfikujesz w naszym
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja techniczna produktu - MW 8x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010106 |
| GTIN/EAN | 5906301811053 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 3.02 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.03 kg / 19.92 N |
| Indukcja magnetyczna ~ ? | 553.67 mT / 5537 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Przedstawione dane stanowią rezultat kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 8x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5531 Gs
553.1 mT
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
uwaga |
| 1 mm |
4162 Gs
416.2 mT
|
1.15 kg / 2.53 lbs
1149.3 g / 11.3 N
|
słaby uchwyt |
| 2 mm |
2984 Gs
298.4 mT
|
0.59 kg / 1.30 lbs
590.7 g / 5.8 N
|
słaby uchwyt |
| 3 mm |
2107 Gs
210.7 mT
|
0.29 kg / 0.65 lbs
294.5 g / 2.9 N
|
słaby uchwyt |
| 5 mm |
1084 Gs
108.4 mT
|
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
słaby uchwyt |
| 10 mm |
296 Gs
29.6 mT
|
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
|
słaby uchwyt |
| 15 mm |
118 Gs
11.8 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 8x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
406.0 g / 4.0 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 2 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
118.0 g / 1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 8x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 1.34 lbs
609.0 g / 6.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.41 kg / 0.90 lbs
406.0 g / 4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 0.45 lbs
203.0 g / 2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.02 kg / 2.24 lbs
1015.0 g / 10.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 8x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 0.45 lbs
203.0 g / 2.0 N
|
| 1 mm |
|
0.51 kg / 1.12 lbs
507.5 g / 5.0 N
|
| 2 mm |
|
1.02 kg / 2.24 lbs
1015.0 g / 10.0 N
|
| 3 mm |
|
1.52 kg / 3.36 lbs
1522.5 g / 14.9 N
|
| 5 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
| 10 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
| 11 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
| 12 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 8x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
OK |
| 40 °C | -2.2% |
1.99 kg / 4.38 lbs
1985.3 g / 19.5 N
|
OK |
| 60 °C | -4.4% |
1.94 kg / 4.28 lbs
1940.7 g / 19.0 N
|
OK |
| 80 °C | -6.6% |
1.90 kg / 4.18 lbs
1896.0 g / 18.6 N
|
|
| 100 °C | -28.8% |
1.45 kg / 3.19 lbs
1445.4 g / 14.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 8x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.48 kg / 20.90 lbs
6 000 Gs
|
1.42 kg / 3.14 lbs
1422 g / 14.0 N
|
N/A |
| 1 mm |
7.26 kg / 16.01 lbs
9 682 Gs
|
1.09 kg / 2.40 lbs
1089 g / 10.7 N
|
6.54 kg / 14.41 lbs
~0 Gs
|
| 2 mm |
5.37 kg / 11.83 lbs
8 324 Gs
|
0.81 kg / 1.78 lbs
805 g / 7.9 N
|
4.83 kg / 10.65 lbs
~0 Gs
|
| 3 mm |
3.88 kg / 8.55 lbs
7 074 Gs
|
0.58 kg / 1.28 lbs
582 g / 5.7 N
|
3.49 kg / 7.69 lbs
~0 Gs
|
| 5 mm |
1.95 kg / 4.30 lbs
5 016 Gs
|
0.29 kg / 0.64 lbs
292 g / 2.9 N
|
1.75 kg / 3.87 lbs
~0 Gs
|
| 10 mm |
0.36 kg / 0.80 lbs
2 169 Gs
|
0.05 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.72 lbs
~0 Gs
|
| 20 mm |
0.03 kg / 0.06 lbs
592 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 8x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 8x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.19 km/h
(7.28 m/s)
|
0.08 J | |
| 30 mm |
45.29 km/h
(12.58 m/s)
|
0.24 J | |
| 50 mm |
58.47 km/h
(16.24 m/s)
|
0.40 J | |
| 100 mm |
82.68 km/h
(22.97 m/s)
|
0.80 J |
Tabela 9: Parametry powłoki (trwałość)
MW 8x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 8x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 868 Mx | 28.7 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 8x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.03 kg | Standard |
| Woda (dno rzeki) |
2.32 kg
(+0.29 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- której wymiar poprzeczny wynosi ok. 10 mm
- o idealnie gładkiej powierzchni styku
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans (między magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Samozapłon
Pył generowany podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Potężne pole
Używaj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Utrata mocy w cieple
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Uszkodzenia ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Smartfony i tablety
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Niklowa powłoka a alergia
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Bezpieczny dystans
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Interferencja medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Produkt nie dla dzieci
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
