MW 8x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010106
GTIN/EAN: 5906301811053
Średnica Ø
8 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
3.02 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.03 kg / 19.92 N
Indukcja magnetyczna
553.67 mT / 5537 Gs
Powłoka
[NiCuNi] nikiel
1.341 ZŁ z VAT / szt. + cena za transport
1.090 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie skontaktuj się przez
formularz kontaktowy
w sekcji kontakt.
Parametry i wygląd magnesu neodymowego zobaczysz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry produktu - MW 8x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010106 |
| GTIN/EAN | 5906301811053 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 3.02 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.03 kg / 19.92 N |
| Indukcja magnetyczna ~ ? | 553.67 mT / 5537 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Niniejsze dane stanowią rezultat symulacji matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 8x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5531 Gs
553.1 mT
|
2.03 kg / 2030.0 g
19.9 N
|
średnie ryzyko |
| 1 mm |
4162 Gs
416.2 mT
|
1.15 kg / 1149.3 g
11.3 N
|
niskie ryzyko |
| 2 mm |
2984 Gs
298.4 mT
|
0.59 kg / 590.7 g
5.8 N
|
niskie ryzyko |
| 3 mm |
2107 Gs
210.7 mT
|
0.29 kg / 294.5 g
2.9 N
|
niskie ryzyko |
| 5 mm |
1084 Gs
108.4 mT
|
0.08 kg / 78.0 g
0.8 N
|
niskie ryzyko |
| 10 mm |
296 Gs
29.6 mT
|
0.01 kg / 5.8 g
0.1 N
|
niskie ryzyko |
| 15 mm |
118 Gs
11.8 mT
|
0.00 kg / 0.9 g
0.0 N
|
niskie ryzyko |
| 20 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 30 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 8x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.41 kg / 406.0 g
4.0 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 230.0 g
2.3 N
|
| 2 mm | Stal (~0.2) |
0.12 kg / 118.0 g
1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 8x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 609.0 g
6.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.41 kg / 406.0 g
4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 203.0 g
2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.02 kg / 1015.0 g
10.0 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 8x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 203.0 g
2.0 N
|
| 1 mm |
|
0.51 kg / 507.5 g
5.0 N
|
| 2 mm |
|
1.02 kg / 1015.0 g
10.0 N
|
| 5 mm |
|
2.03 kg / 2030.0 g
19.9 N
|
| 10 mm |
|
2.03 kg / 2030.0 g
19.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 8x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.03 kg / 2030.0 g
19.9 N
|
OK |
| 40 °C | -2.2% |
1.99 kg / 1985.3 g
19.5 N
|
OK |
| 60 °C | -4.4% |
1.94 kg / 1940.7 g
19.0 N
|
OK |
| 80 °C | -6.6% |
1.90 kg / 1896.0 g
18.6 N
|
|
| 100 °C | -28.8% |
1.45 kg / 1445.4 g
14.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 8x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.48 kg / 9481 g
93.0 N
6 000 Gs
|
N/A |
| 1 mm |
7.26 kg / 7262 g
71.2 N
9 682 Gs
|
6.54 kg / 6536 g
64.1 N
~0 Gs
|
| 2 mm |
5.37 kg / 5368 g
52.7 N
8 324 Gs
|
4.83 kg / 4831 g
47.4 N
~0 Gs
|
| 3 mm |
3.88 kg / 3877 g
38.0 N
7 074 Gs
|
3.49 kg / 3489 g
34.2 N
~0 Gs
|
| 5 mm |
1.95 kg / 1949 g
19.1 N
5 016 Gs
|
1.75 kg / 1754 g
17.2 N
~0 Gs
|
| 10 mm |
0.36 kg / 364 g
3.6 N
2 169 Gs
|
0.33 kg / 328 g
3.2 N
~0 Gs
|
| 20 mm |
0.03 kg / 27 g
0.3 N
592 Gs
|
0.02 kg / 24 g
0.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
66 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 8x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 8x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.19 km/h
(7.28 m/s)
|
0.08 J | |
| 30 mm |
45.29 km/h
(12.58 m/s)
|
0.24 J | |
| 50 mm |
58.47 km/h
(16.24 m/s)
|
0.40 J | |
| 100 mm |
82.68 km/h
(22.97 m/s)
|
0.80 J |
Tabela 9: Odporność na korozję
MW 8x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 8x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 868 Mx | 28.7 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 8x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.03 kg | Standard |
| Woda (dno rzeki) |
2.32 kg
(+0.29 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z użyciem podłoża ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- o grubości przynajmniej 10 mm
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Uszkodzenia czujników
Silne pole magnetyczne zakłóca funkcjonowanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Zagrożenie wybuchem pyłu
Pył generowany podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Utrata mocy w cieple
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Łamliwość magnesów
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Produkt nie dla dzieci
Magnesy neodymowe to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Siła zgniatająca
Bloki magnetyczne mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
