MW 8x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010106
GTIN/EAN: 5906301811053
Średnica Ø
8 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
3.02 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.03 kg / 19.92 N
Indukcja magnetyczna
553.67 mT / 5537 Gs
Powłoka
[NiCuNi] nikiel
1.341 ZŁ z VAT / szt. + cena za transport
1.090 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo pisz poprzez
formularz zgłoszeniowy
przez naszą stronę.
Masę i wygląd magnesów neodymowych obliczysz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry techniczne - MW 8x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010106 |
| GTIN/EAN | 5906301811053 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 3.02 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.03 kg / 19.92 N |
| Indukcja magnetyczna ~ ? | 553.67 mT / 5537 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Przedstawione dane stanowią wynik symulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 8x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5531 Gs
553.1 mT
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
średnie ryzyko |
| 1 mm |
4162 Gs
416.2 mT
|
1.15 kg / 2.53 lbs
1149.3 g / 11.3 N
|
słaby uchwyt |
| 2 mm |
2984 Gs
298.4 mT
|
0.59 kg / 1.30 lbs
590.7 g / 5.8 N
|
słaby uchwyt |
| 3 mm |
2107 Gs
210.7 mT
|
0.29 kg / 0.65 lbs
294.5 g / 2.9 N
|
słaby uchwyt |
| 5 mm |
1084 Gs
108.4 mT
|
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
słaby uchwyt |
| 10 mm |
296 Gs
29.6 mT
|
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
|
słaby uchwyt |
| 15 mm |
118 Gs
11.8 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 8x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
406.0 g / 4.0 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 2 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
118.0 g / 1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 8x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 1.34 lbs
609.0 g / 6.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.41 kg / 0.90 lbs
406.0 g / 4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 0.45 lbs
203.0 g / 2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.02 kg / 2.24 lbs
1015.0 g / 10.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 8x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 0.45 lbs
203.0 g / 2.0 N
|
| 1 mm |
|
0.51 kg / 1.12 lbs
507.5 g / 5.0 N
|
| 2 mm |
|
1.02 kg / 2.24 lbs
1015.0 g / 10.0 N
|
| 3 mm |
|
1.52 kg / 3.36 lbs
1522.5 g / 14.9 N
|
| 5 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
| 10 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
| 11 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
| 12 mm |
|
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 8x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.03 kg / 4.48 lbs
2030.0 g / 19.9 N
|
OK |
| 40 °C | -2.2% |
1.99 kg / 4.38 lbs
1985.3 g / 19.5 N
|
OK |
| 60 °C | -4.4% |
1.94 kg / 4.28 lbs
1940.7 g / 19.0 N
|
OK |
| 80 °C | -6.6% |
1.90 kg / 4.18 lbs
1896.0 g / 18.6 N
|
|
| 100 °C | -28.8% |
1.45 kg / 3.19 lbs
1445.4 g / 14.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 8x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.48 kg / 20.90 lbs
6 000 Gs
|
1.42 kg / 3.14 lbs
1422 g / 14.0 N
|
N/A |
| 1 mm |
7.26 kg / 16.01 lbs
9 682 Gs
|
1.09 kg / 2.40 lbs
1089 g / 10.7 N
|
6.54 kg / 14.41 lbs
~0 Gs
|
| 2 mm |
5.37 kg / 11.83 lbs
8 324 Gs
|
0.81 kg / 1.78 lbs
805 g / 7.9 N
|
4.83 kg / 10.65 lbs
~0 Gs
|
| 3 mm |
3.88 kg / 8.55 lbs
7 074 Gs
|
0.58 kg / 1.28 lbs
582 g / 5.7 N
|
3.49 kg / 7.69 lbs
~0 Gs
|
| 5 mm |
1.95 kg / 4.30 lbs
5 016 Gs
|
0.29 kg / 0.64 lbs
292 g / 2.9 N
|
1.75 kg / 3.87 lbs
~0 Gs
|
| 10 mm |
0.36 kg / 0.80 lbs
2 169 Gs
|
0.05 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.72 lbs
~0 Gs
|
| 20 mm |
0.03 kg / 0.06 lbs
592 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 8x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 8x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.19 km/h
(7.28 m/s)
|
0.08 J | |
| 30 mm |
45.29 km/h
(12.58 m/s)
|
0.24 J | |
| 50 mm |
58.47 km/h
(16.24 m/s)
|
0.40 J | |
| 100 mm |
82.68 km/h
(22.97 m/s)
|
0.80 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 8x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 8x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 868 Mx | 28.7 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 8x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.03 kg | Standard |
| Woda (dno rzeki) |
2.32 kg
(+0.29 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- z użyciem blachy ze miękkiej stali, która służy jako element zamykający obwód
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- przy bezpośrednim styku (brak powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Dystans – obecność ciała obcego (farba, brud, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka stal nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Zakaz obróbki
Proszek generowany podczas szlifowania magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko pęknięcia
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Zasady obsługi
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Uwaga: zadławienie
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Implanty medyczne
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Elektronika precyzyjna
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Reakcje alergiczne
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
