MW 8x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010104
GTIN/EAN: 5906301811039
Średnica Ø
8 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
1.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.04 kg / 20.00 N
Indukcja magnetyczna
437.78 mT / 4378 Gs
Powłoka
[NiCuNi] nikiel
0.701 ZŁ z VAT / szt. + cena za transport
0.570 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub napisz przez
formularz
na stronie kontakt.
Masę i budowę magnesu przetestujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 8x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010104 |
| GTIN/EAN | 5906301811039 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 1.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.04 kg / 20.00 N |
| Indukcja magnetyczna ~ ? | 437.78 mT / 4378 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Przedstawione informacje są wynik analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 8x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4374 Gs
437.4 mT
|
2.04 kg / 2040.0 g
20.0 N
|
średnie ryzyko |
| 1 mm |
3338 Gs
333.8 mT
|
1.19 kg / 1187.8 g
11.7 N
|
bezpieczny |
| 2 mm |
2386 Gs
238.6 mT
|
0.61 kg / 607.0 g
6.0 N
|
bezpieczny |
| 3 mm |
1663 Gs
166.3 mT
|
0.29 kg / 294.9 g
2.9 N
|
bezpieczny |
| 5 mm |
824 Gs
82.4 mT
|
0.07 kg / 72.4 g
0.7 N
|
bezpieczny |
| 10 mm |
205 Gs
20.5 mT
|
0.00 kg / 4.5 g
0.0 N
|
bezpieczny |
| 15 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.6 g
0.0 N
|
bezpieczny |
| 20 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 8x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.41 kg / 408.0 g
4.0 N
|
| 1 mm | Stal (~0.2) |
0.24 kg / 238.0 g
2.3 N
|
| 2 mm | Stal (~0.2) |
0.12 kg / 122.0 g
1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 8x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 612.0 g
6.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.41 kg / 408.0 g
4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 204.0 g
2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.02 kg / 1020.0 g
10.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 8x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 204.0 g
2.0 N
|
| 1 mm |
|
0.51 kg / 510.0 g
5.0 N
|
| 2 mm |
|
1.02 kg / 1020.0 g
10.0 N
|
| 5 mm |
|
2.04 kg / 2040.0 g
20.0 N
|
| 10 mm |
|
2.04 kg / 2040.0 g
20.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 8x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.04 kg / 2040.0 g
20.0 N
|
OK |
| 40 °C | -2.2% |
2.00 kg / 1995.1 g
19.6 N
|
OK |
| 60 °C | -4.4% |
1.95 kg / 1950.2 g
19.1 N
|
|
| 80 °C | -6.6% |
1.91 kg / 1905.4 g
18.7 N
|
|
| 100 °C | -28.8% |
1.45 kg / 1452.5 g
14.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 8x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.93 kg / 5929 g
58.2 N
5 531 Gs
|
N/A |
| 1 mm |
4.63 kg / 4629 g
45.4 N
7 730 Gs
|
4.17 kg / 4166 g
40.9 N
~0 Gs
|
| 2 mm |
3.45 kg / 3452 g
33.9 N
6 675 Gs
|
3.11 kg / 3107 g
30.5 N
~0 Gs
|
| 3 mm |
2.49 kg / 2495 g
24.5 N
5 674 Gs
|
2.25 kg / 2245 g
22.0 N
~0 Gs
|
| 5 mm |
1.23 kg / 1232 g
12.1 N
3 989 Gs
|
1.11 kg / 1109 g
10.9 N
~0 Gs
|
| 10 mm |
0.21 kg / 211 g
2.1 N
1 648 Gs
|
0.19 kg / 189 g
1.9 N
~0 Gs
|
| 20 mm |
0.01 kg / 13 g
0.1 N
410 Gs
|
0.01 kg / 12 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
39 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 8x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 8x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
37.12 km/h
(10.31 m/s)
|
0.08 J | |
| 30 mm |
64.21 km/h
(17.83 m/s)
|
0.24 J | |
| 50 mm |
82.89 km/h
(23.02 m/s)
|
0.40 J | |
| 100 mm |
117.22 km/h
(32.56 m/s)
|
0.80 J |
Tabela 9: Odporność na korozję
MW 8x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 8x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 233 Mx | 22.3 µWb |
| Współczynnik Pc | 0.59 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 8x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.04 kg | Standard |
| Woda (dno rzeki) |
2.34 kg
(+0.30 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.59
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki powłoce (nikiel, złoto, Ag) zyskują nowoczesny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z użyciem płyty ze miękkiej stali, która służy jako element zamykający obwód
- której grubość to min. 10 mm
- z powierzchnią oczyszczoną i gładką
- przy bezpośrednim styku (bez farby)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – zbyt cienka blacha nie przyjmuje całego pola, przez co część mocy ucieka na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Bezpieczna praca przy magnesach neodymowych
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Uwaga: zadławienie
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Smartfony i tablety
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Ochrona urządzeń
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Niklowa powłoka a alergia
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Kruchy spiek
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
