Potężne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Posiadamy w sprzedaży szeroki wybór magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do użytku w domu, garażu oraz modelarstwa. Zobacz produkty dostępne od ręki.

zobacz pełną ofertę

Zestawy do magnet fishing (hobbystów)

Odkryj pasję z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w każdej wodzie.

wybierz swój magnes do wody

Mocowania magnetyczne dla przemysłu

Niezawodne rozwiązania do montażu bezinwazyjnego. Mocowania gwintowane (M8, M10, M12) zapewniają szybkie usprawnienie pracy na magazynach. Idealnie nadają się przy mocowaniu lamp, czujników oraz reklam.

sprawdź dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, wyślemy dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 8x3 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010103

GTIN/EAN: 5906301811022

5.00

Średnica Ø

8 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

1.13 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.70 kg / 16.67 N

Indukcja magnetyczna

371.53 mT / 3715 Gs

Powłoka

[NiCuNi] nikiel

0.701 z VAT / szt. + cena za transport

0.570 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.570 ZŁ
0.701 ZŁ
cena od 825 szt.
0.513 ZŁ
0.631 ZŁ
cena od 1650 szt.
0.502 ZŁ
0.617 ZŁ
Chcesz pogadać o magnesach?

Dzwoń do nas +48 22 499 98 98 albo napisz korzystając z nasz formularz online przez naszą stronę.
Udźwig oraz budowę elementów magnetycznych skontrolujesz w naszym narzędziu online do obliczeń.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Karta produktu - MW 8x3 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 8x3 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010103
GTIN/EAN 5906301811022
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 8 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 1.13 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.70 kg / 16.67 N
Indukcja magnetyczna ~ ? 371.53 mT / 3715 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 8x3 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza inżynierska magnesu neodymowego - parametry techniczne

Poniższe wartości stanowią wynik analizy fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 8x3 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3712 Gs
371.2 mT
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
niskie ryzyko
1 mm 2880 Gs
288.0 mT
1.02 kg / 2.26 lbs
1023.3 g / 10.0 N
niskie ryzyko
2 mm 2069 Gs
206.9 mT
0.53 kg / 1.16 lbs
527.9 g / 5.2 N
niskie ryzyko
3 mm 1439 Gs
143.9 mT
0.26 kg / 0.56 lbs
255.3 g / 2.5 N
niskie ryzyko
5 mm 704 Gs
70.4 mT
0.06 kg / 0.13 lbs
61.1 g / 0.6 N
niskie ryzyko
10 mm 169 Gs
16.9 mT
0.00 kg / 0.01 lbs
3.5 g / 0.0 N
niskie ryzyko
15 mm 62 Gs
6.2 mT
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
niskie ryzyko
20 mm 29 Gs
2.9 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
30 mm 9 Gs
0.9 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
50 mm 2 Gs
0.2 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Siła równoległa obsunięcia (pion)
MW 8x3 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.34 kg / 0.75 lbs
340.0 g / 3.3 N
1 mm Stal (~0.2) 0.20 kg / 0.45 lbs
204.0 g / 2.0 N
2 mm Stal (~0.2) 0.11 kg / 0.23 lbs
106.0 g / 1.0 N
3 mm Stal (~0.2) 0.05 kg / 0.11 lbs
52.0 g / 0.5 N
5 mm Stal (~0.2) 0.01 kg / 0.03 lbs
12.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 8x3 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.85 kg / 1.87 lbs
850.0 g / 8.3 N

Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 8x3 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
1 mm
25%
0.43 kg / 0.94 lbs
425.0 g / 4.2 N
2 mm
50%
0.85 kg / 1.87 lbs
850.0 g / 8.3 N
3 mm
75%
1.28 kg / 2.81 lbs
1275.0 g / 12.5 N
5 mm
100%
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
10 mm
100%
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
11 mm
100%
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
12 mm
100%
1.70 kg / 3.75 lbs
1700.0 g / 16.7 N

Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 8x3 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.70 kg / 3.75 lbs
1700.0 g / 16.7 N
OK
40 °C -2.2% 1.66 kg / 3.67 lbs
1662.6 g / 16.3 N
OK
60 °C -4.4% 1.63 kg / 3.58 lbs
1625.2 g / 15.9 N
80 °C -6.6% 1.59 kg / 3.50 lbs
1587.8 g / 15.6 N
100 °C -28.8% 1.21 kg / 2.67 lbs
1210.4 g / 11.9 N

Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 8x3 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 4.27 kg / 9.42 lbs
5 146 Gs
0.64 kg / 1.41 lbs
641 g / 6.3 N
N/A
1 mm 3.40 kg / 7.50 lbs
6 627 Gs
0.51 kg / 1.13 lbs
510 g / 5.0 N
3.06 kg / 6.75 lbs
~0 Gs
2 mm 2.57 kg / 5.67 lbs
5 761 Gs
0.39 kg / 0.85 lbs
386 g / 3.8 N
2.31 kg / 5.10 lbs
~0 Gs
3 mm 1.87 kg / 4.12 lbs
4 914 Gs
0.28 kg / 0.62 lbs
281 g / 2.8 N
1.68 kg / 3.71 lbs
~0 Gs
5 mm 0.93 kg / 2.04 lbs
3 456 Gs
0.14 kg / 0.31 lbs
139 g / 1.4 N
0.83 kg / 1.84 lbs
~0 Gs
10 mm 0.15 kg / 0.34 lbs
1 408 Gs
0.02 kg / 0.05 lbs
23 g / 0.2 N
0.14 kg / 0.30 lbs
~0 Gs
20 mm 0.01 kg / 0.02 lbs
339 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
31 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
8 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 8x3 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.0 cm
Implant słuchowy 10 Gs (1.0 mT) 3.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 8x3 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 39.17 km/h
(10.88 m/s)
0.07 J
30 mm 67.75 km/h
(18.82 m/s)
0.20 J
50 mm 87.47 km/h
(24.30 m/s)
0.33 J
100 mm 123.70 km/h
(34.36 m/s)
0.67 J

Tabela 9: Trwałość powłoki antykorozyjnej
MW 8x3 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MW 8x3 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 946 Mx 19.5 µWb
Współczynnik Pc 0.48 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 8x3 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.70 kg Standard
Woda (dno rzeki) 1.95 kg
(+0.25 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.

3. Stabilność termiczna

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010103-2026
Szybki konwerter jednostek
Siła oderwania

Pole magnetyczne

Sprawdź inne propozycje

Oferowany produkt to bardzo silny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø8x3 mm gwarantuje najwyższą gęstość energii. Komponent MW 8x3 / N38 cechuje się tolerancją ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 1.70 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w typowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych czujników oraz wydajnych filtrów, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki sile przyciągania 16.67 N przy wadze zaledwie 1.13 g, ten walec jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, zalecanym sposobem jest wklejanie ich w otwory o średnicy minimalnie większej (np. 8,1 mm) przy użyciu klejów epoksydowych. Dla zapewnienia stabilności w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najczęściej wybierany standard dla przemysłowych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz wysoką odporność na demagnetyzację. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø8x3), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym magazynie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 8 mm i wysokość 3 mm. Kluczowym parametrem jest tutaj udźwig wynoszący około 1.70 kg (siła ~16.67 N), co przy tak kompaktowych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 8 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Wady oraz zalety magnesów neodymowych Nd2Fe14B.

Zalety

Neodymy to nie tylko moc przyciągania, ale także inne kluczowe właściwości, w tym::
  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
  • Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
  • Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
  • Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
  • Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.

Słabe strony

Warto znać też słabe strony magnesów neodymowych:
  • Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.

Analiza siły trzymania

Maksymalna moc trzymania magnesuco się na to składa?

Siła oderwania została wyznaczona dla optymalnej konfiguracji, obejmującej:
  • przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
  • o przekroju wynoszącej minimum 10 mm
  • o szlifowanej powierzchni kontaktu
  • przy całkowitym braku odstępu (brak farby)
  • podczas odrywania w kierunku pionowym do powierzchni mocowania
  • przy temperaturze pokojowej

Kluczowe elementy wpływające na udźwig

Na efektywny udźwig oddziałują parametry środowiska pracy, takie jak (od najważniejszych):
  • Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
  • Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
  • Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
  • Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).

Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje nośność.

BHP przy magnesach
Zagrożenie dla nawigacji

Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.

Zagrożenie wybuchem pyłu

Proszek generowany podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Wpływ na zdrowie

Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.

Uwaga na odpryski

Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.

Ostrzeżenie dla alergików

Pewna grupa użytkowników ma uczulenie na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może wywołać zaczerwienienie skóry. Wskazane jest stosowanie rękawic bezlateksowych.

Trwała utrata siły

Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.

Zagrożenie dla elektroniki

Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.

Ryzyko złamań

Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.

Potężne pole

Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.

Zagrożenie dla najmłodszych

Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.

Ważne! Chcesz wiedzieć więcej? Sprawdź nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98