MW 10x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010010
GTIN: 5906301810094
Średnica Ø
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
2.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.80 kg / 27.42 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
1.021 ZŁ z VAT / szt. + cena za transport
0.830 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie napisz przez
formularz kontaktowy
przez naszą stronę.
Parametry oraz wygląd magnesu sprawdzisz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 10x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010010 |
| GTIN | 5906301810094 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 2.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.80 kg / 27.42 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Niniejsze wartości stanowią wynik kalkulacji fizycznej. Wartości zostały wyliczone na algorytmach dla materiału NdFeB. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
MW 10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3867 Gs
386.7 mT
|
2.80 kg / 2800.0 g
27.5 N
|
uwaga |
| 1 mm |
3168 Gs
316.8 mT
|
1.88 kg / 1879.8 g
18.4 N
|
słaby uchwyt |
| 2 mm |
2460 Gs
246.0 mT
|
1.13 kg / 1133.7 g
11.1 N
|
słaby uchwyt |
| 3 mm |
1855 Gs
185.5 mT
|
0.64 kg / 644.6 g
6.3 N
|
słaby uchwyt |
| 5 mm |
1036 Gs
103.6 mT
|
0.20 kg / 200.9 g
2.0 N
|
słaby uchwyt |
| 10 mm |
293 Gs
29.3 mT
|
0.02 kg / 16.1 g
0.2 N
|
słaby uchwyt |
| 15 mm |
114 Gs
11.4 mT
|
0.00 kg / 2.4 g
0.0 N
|
słaby uchwyt |
| 20 mm |
55 Gs
5.5 mT
|
0.00 kg / 0.6 g
0.0 N
|
słaby uchwyt |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 560.0 g
5.5 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 376.0 g
3.7 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 226.0 g
2.2 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 128.0 g
1.3 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 840.0 g
8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 560.0 g
5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 280.0 g
2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 1400.0 g
13.7 N
|
MW 10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 280.0 g
2.7 N
|
| 1 mm |
|
0.70 kg / 700.0 g
6.9 N
|
| 2 mm |
|
1.40 kg / 1400.0 g
13.7 N
|
| 5 mm |
|
2.80 kg / 2800.0 g
27.5 N
|
| 10 mm |
|
2.80 kg / 2800.0 g
27.5 N
|
MW 10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.80 kg / 2800.0 g
27.5 N
|
OK |
| 40 °C | -2.2% |
2.74 kg / 2738.4 g
26.9 N
|
OK |
| 60 °C | -4.4% |
2.68 kg / 2676.8 g
26.3 N
|
|
| 80 °C | -6.6% |
2.62 kg / 2615.2 g
25.7 N
|
|
| 100 °C | -28.8% |
1.99 kg / 1993.6 g
19.6 N
|
MW 10x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
7.24 kg / 7239 g
71.0 N
5 247 Gs
|
N/A |
| 1 mm |
6.04 kg / 6036 g
59.2 N
7 061 Gs
|
5.43 kg / 5432 g
53.3 N
~0 Gs
|
| 2 mm |
4.86 kg / 4860 g
47.7 N
6 336 Gs
|
4.37 kg / 4374 g
42.9 N
~0 Gs
|
| 3 mm |
3.81 kg / 3813 g
37.4 N
5 612 Gs
|
3.43 kg / 3431 g
33.7 N
~0 Gs
|
| 5 mm |
2.22 kg / 2221 g
21.8 N
4 283 Gs
|
2.00 kg / 1999 g
19.6 N
~0 Gs
|
| 10 mm |
0.52 kg / 519 g
5.1 N
2 071 Gs
|
0.47 kg / 467 g
4.6 N
~0 Gs
|
| 20 mm |
0.04 kg / 42 g
0.4 N
587 Gs
|
0.04 kg / 38 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
61 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.86 km/h
(9.68 m/s)
|
0.11 J | |
| 30 mm |
60.17 km/h
(16.71 m/s)
|
0.33 J | |
| 50 mm |
77.68 km/h
(21.58 m/s)
|
0.55 J | |
| 100 mm |
109.85 km/h
(30.51 m/s)
|
1.10 J |
MW 10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 142 Mx | 31.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
MW 10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.80 kg | Standard |
| Woda (dno rzeki) |
3.21 kg
(+0.41 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ułamek siły prostopadłej.
2. Efektywność a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
Inne propozycje
Zalety oraz wady neodymowych magnesów NdFeB.
Mocne strony
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z użyciem płyty ze miękkiej stali, która służy jako element zamykający obwód
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – zbyt cienka płyta nie zamyka strumienia, przez co część mocy marnuje się na drugą stronę.
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Smartfony i tablety
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Interferencja medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Ostrzeżenie dla alergików
Pewna grupa użytkowników ma uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może skutkować wysypkę. Zalecamy stosowanie rękawiczek ochronnych.
Zasady obsługi
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Urządzenia elektroniczne
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa silne magnesy.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj z dala od dzieci i zwierząt.
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
