MW 10x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010010
GTIN/EAN: 5906301810094
Średnica Ø
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
2.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.80 kg / 27.42 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
1.021 ZŁ z VAT / szt. + cena za transport
0.830 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie daj znać przez
formularz kontaktowy
w sekcji kontakt.
Właściwości oraz formę magnesów neodymowych wyliczysz u nas w
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja - MW 10x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010010 |
| GTIN/EAN | 5906301810094 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 2.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.80 kg / 27.42 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Poniższe informacje są wynik analizy matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3867 Gs
386.7 mT
|
2.80 kg / 2800.0 g
27.5 N
|
uwaga |
| 1 mm |
3168 Gs
316.8 mT
|
1.88 kg / 1879.8 g
18.4 N
|
słaby uchwyt |
| 2 mm |
2460 Gs
246.0 mT
|
1.13 kg / 1133.7 g
11.1 N
|
słaby uchwyt |
| 3 mm |
1855 Gs
185.5 mT
|
0.64 kg / 644.6 g
6.3 N
|
słaby uchwyt |
| 5 mm |
1036 Gs
103.6 mT
|
0.20 kg / 200.9 g
2.0 N
|
słaby uchwyt |
| 10 mm |
293 Gs
29.3 mT
|
0.02 kg / 16.1 g
0.2 N
|
słaby uchwyt |
| 15 mm |
114 Gs
11.4 mT
|
0.00 kg / 2.4 g
0.0 N
|
słaby uchwyt |
| 20 mm |
55 Gs
5.5 mT
|
0.00 kg / 0.6 g
0.0 N
|
słaby uchwyt |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 560.0 g
5.5 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 376.0 g
3.7 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 226.0 g
2.2 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 128.0 g
1.3 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 840.0 g
8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 560.0 g
5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 280.0 g
2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 1400.0 g
13.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 280.0 g
2.7 N
|
| 1 mm |
|
0.70 kg / 700.0 g
6.9 N
|
| 2 mm |
|
1.40 kg / 1400.0 g
13.7 N
|
| 5 mm |
|
2.80 kg / 2800.0 g
27.5 N
|
| 10 mm |
|
2.80 kg / 2800.0 g
27.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.80 kg / 2800.0 g
27.5 N
|
OK |
| 40 °C | -2.2% |
2.74 kg / 2738.4 g
26.9 N
|
OK |
| 60 °C | -4.4% |
2.68 kg / 2676.8 g
26.3 N
|
|
| 80 °C | -6.6% |
2.62 kg / 2615.2 g
25.7 N
|
|
| 100 °C | -28.8% |
1.99 kg / 1993.6 g
19.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 10x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
7.24 kg / 7239 g
71.0 N
5 247 Gs
|
N/A |
| 1 mm |
6.04 kg / 6036 g
59.2 N
7 061 Gs
|
5.43 kg / 5432 g
53.3 N
~0 Gs
|
| 2 mm |
4.86 kg / 4860 g
47.7 N
6 336 Gs
|
4.37 kg / 4374 g
42.9 N
~0 Gs
|
| 3 mm |
3.81 kg / 3813 g
37.4 N
5 612 Gs
|
3.43 kg / 3431 g
33.7 N
~0 Gs
|
| 5 mm |
2.22 kg / 2221 g
21.8 N
4 283 Gs
|
2.00 kg / 1999 g
19.6 N
~0 Gs
|
| 10 mm |
0.52 kg / 519 g
5.1 N
2 071 Gs
|
0.47 kg / 467 g
4.6 N
~0 Gs
|
| 20 mm |
0.04 kg / 42 g
0.4 N
587 Gs
|
0.04 kg / 38 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
61 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.86 km/h
(9.68 m/s)
|
0.11 J | |
| 30 mm |
60.17 km/h
(16.71 m/s)
|
0.33 J | |
| 50 mm |
77.68 km/h
(21.58 m/s)
|
0.55 J | |
| 100 mm |
109.85 km/h
(30.51 m/s)
|
1.10 J |
Tabela 9: Odporność na korozję
MW 10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 142 Mx | 31.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.80 kg | Standard |
| Woda (dno rzeki) |
3.21 kg
(+0.41 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) zyskują estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- przy całkowitym braku odstępu (bez farby)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność jakiejkolwiek warstwy (farba, taśma, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Ostrzeżenia
Magnesy są kruche
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ochrona urządzeń
Bardzo silne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Limity termiczne
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Chronić przed dziećmi
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Zakaz obróbki
Proszek powstający podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Kompas i GPS
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Siła neodymu
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Nadwrażliwość na metale
Część populacji posiada alergię kontaktową na nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może skutkować zaczerwienienie skóry. Wskazane jest stosowanie rękawiczek ochronnych.
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
