MW 10x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010010
GTIN/EAN: 5906301810094
Średnica Ø
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
2.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.80 kg / 27.42 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
1.021 ZŁ z VAT / szt. + cena za transport
0.830 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
ewentualnie skontaktuj się przez
formularz zapytania
przez naszą stronę.
Parametry a także budowę magnesu neodymowego sprawdzisz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja produktu - MW 10x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010010 |
| GTIN/EAN | 5906301810094 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 2.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.80 kg / 27.42 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Niniejsze dane są rezultat kalkulacji inżynierskiej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3867 Gs
386.7 mT
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
mocny |
| 1 mm |
3168 Gs
316.8 mT
|
1.88 kg / 4.14 lbs
1879.8 g / 18.4 N
|
słaby uchwyt |
| 2 mm |
2460 Gs
246.0 mT
|
1.13 kg / 2.50 lbs
1133.7 g / 11.1 N
|
słaby uchwyt |
| 3 mm |
1855 Gs
185.5 mT
|
0.64 kg / 1.42 lbs
644.6 g / 6.3 N
|
słaby uchwyt |
| 5 mm |
1036 Gs
103.6 mT
|
0.20 kg / 0.44 lbs
200.9 g / 2.0 N
|
słaby uchwyt |
| 10 mm |
293 Gs
29.3 mT
|
0.02 kg / 0.04 lbs
16.1 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
114 Gs
11.4 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
55 Gs
5.5 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 0.50 lbs
226.0 g / 2.2 N
|
| 3 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 1.85 lbs
840.0 g / 8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 3.09 lbs
1400.0 g / 13.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 1 mm |
|
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 2 mm |
|
1.40 kg / 3.09 lbs
1400.0 g / 13.7 N
|
| 3 mm |
|
2.10 kg / 4.63 lbs
2100.0 g / 20.6 N
|
| 5 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
| 10 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
| 11 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
| 12 mm |
|
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.80 kg / 6.17 lbs
2800.0 g / 27.5 N
|
OK |
| 40 °C | -2.2% |
2.74 kg / 6.04 lbs
2738.4 g / 26.9 N
|
OK |
| 60 °C | -4.4% |
2.68 kg / 5.90 lbs
2676.8 g / 26.3 N
|
|
| 80 °C | -6.6% |
2.62 kg / 5.77 lbs
2615.2 g / 25.7 N
|
|
| 100 °C | -28.8% |
1.99 kg / 4.40 lbs
1993.6 g / 19.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 10x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
7.24 kg / 15.96 lbs
5 247 Gs
|
1.09 kg / 2.39 lbs
1086 g / 10.7 N
|
N/A |
| 1 mm |
6.04 kg / 13.31 lbs
7 061 Gs
|
0.91 kg / 2.00 lbs
905 g / 8.9 N
|
5.43 kg / 11.98 lbs
~0 Gs
|
| 2 mm |
4.86 kg / 10.71 lbs
6 336 Gs
|
0.73 kg / 1.61 lbs
729 g / 7.2 N
|
4.37 kg / 9.64 lbs
~0 Gs
|
| 3 mm |
3.81 kg / 8.41 lbs
5 612 Gs
|
0.57 kg / 1.26 lbs
572 g / 5.6 N
|
3.43 kg / 7.56 lbs
~0 Gs
|
| 5 mm |
2.22 kg / 4.90 lbs
4 283 Gs
|
0.33 kg / 0.73 lbs
333 g / 3.3 N
|
2.00 kg / 4.41 lbs
~0 Gs
|
| 10 mm |
0.52 kg / 1.15 lbs
2 071 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.03 lbs
~0 Gs
|
| 20 mm |
0.04 kg / 0.09 lbs
587 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
61 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
37 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.86 km/h
(9.68 m/s)
|
0.11 J | |
| 30 mm |
60.17 km/h
(16.71 m/s)
|
0.33 J | |
| 50 mm |
77.68 km/h
(21.58 m/s)
|
0.55 J | |
| 100 mm |
109.85 km/h
(30.51 m/s)
|
1.10 J |
Tabela 9: Odporność na korozję
MW 10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 142 Mx | 31.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.80 kg | Standard |
| Woda (dno rzeki) |
3.21 kg
(+0.41 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą obniża nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Rozruszniki serca
Osoby z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Obróbka mechaniczna
Proszek powstający podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zakaz zabawy
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Wrażliwość na ciepło
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
