MPL 30x15x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020389
GTIN/EAN: 5906301811886
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
33.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
16.84 kg / 165.22 N
Indukcja magnetyczna
413.45 mT / 4135 Gs
Powłoka
[NiCuNi] nikiel
24.48 ZŁ z VAT / szt. + cena za transport
19.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub pisz korzystając z
formularz
na naszej stronie.
Moc oraz wygląd magnesów sprawdzisz u nas w
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne produktu - MPL 30x15x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x15x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020389 |
| GTIN/EAN | 5906301811886 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 33.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 16.84 kg / 165.22 N |
| Indukcja magnetyczna ~ ? | 413.45 mT / 4135 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione wartości są rezultat symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 30x15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4133 Gs
413.3 mT
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
miażdżący |
| 1 mm |
3754 Gs
375.4 mT
|
13.89 kg / 30.62 lbs
13889.5 g / 136.3 N
|
miażdżący |
| 2 mm |
3365 Gs
336.5 mT
|
11.16 kg / 24.60 lbs
11159.2 g / 109.5 N
|
miażdżący |
| 3 mm |
2988 Gs
298.8 mT
|
8.80 kg / 19.41 lbs
8803.6 g / 86.4 N
|
średnie ryzyko |
| 5 mm |
2321 Gs
232.1 mT
|
5.31 kg / 11.71 lbs
5309.9 g / 52.1 N
|
średnie ryzyko |
| 10 mm |
1225 Gs
122.5 mT
|
1.48 kg / 3.26 lbs
1480.1 g / 14.5 N
|
bezpieczny |
| 15 mm |
684 Gs
68.4 mT
|
0.46 kg / 1.02 lbs
461.6 g / 4.5 N
|
bezpieczny |
| 20 mm |
409 Gs
40.9 mT
|
0.16 kg / 0.36 lbs
164.8 g / 1.6 N
|
bezpieczny |
| 30 mm |
173 Gs
17.3 mT
|
0.03 kg / 0.07 lbs
29.6 g / 0.3 N
|
bezpieczny |
| 50 mm |
50 Gs
5.0 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 30x15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.37 kg / 7.43 lbs
3368.0 g / 33.0 N
|
| 1 mm | Stal (~0.2) |
2.78 kg / 6.12 lbs
2778.0 g / 27.3 N
|
| 2 mm | Stal (~0.2) |
2.23 kg / 4.92 lbs
2232.0 g / 21.9 N
|
| 3 mm | Stal (~0.2) |
1.76 kg / 3.88 lbs
1760.0 g / 17.3 N
|
| 5 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1062.0 g / 10.4 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 30x15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.05 kg / 11.14 lbs
5052.0 g / 49.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.37 kg / 7.43 lbs
3368.0 g / 33.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.68 kg / 3.71 lbs
1684.0 g / 16.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.42 kg / 18.56 lbs
8420.0 g / 82.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 30x15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 1 mm |
|
2.11 kg / 4.64 lbs
2105.0 g / 20.7 N
|
| 2 mm |
|
4.21 kg / 9.28 lbs
4210.0 g / 41.3 N
|
| 3 mm |
|
6.31 kg / 13.92 lbs
6315.0 g / 62.0 N
|
| 5 mm |
|
10.53 kg / 23.20 lbs
10525.0 g / 103.3 N
|
| 10 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
| 11 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
| 12 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 30x15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
OK |
| 40 °C | -2.2% |
16.47 kg / 36.31 lbs
16469.5 g / 161.6 N
|
OK |
| 60 °C | -4.4% |
16.10 kg / 35.49 lbs
16099.0 g / 157.9 N
|
|
| 80 °C | -6.6% |
15.73 kg / 34.68 lbs
15728.6 g / 154.3 N
|
|
| 100 °C | -28.8% |
11.99 kg / 26.43 lbs
11990.1 g / 117.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 30x15x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg) (N-N) |
|---|---|---|---|
| 0 mm |
47.39 kg / 104.48 lbs
5 357 Gs
|
7.11 kg / 15.67 lbs
69.7 N
|
N/A |
| 1 mm |
43.23 kg / 95.30 lbs
7 895 Gs
|
6.48 kg / 14.29 lbs
63.6 N
|
38.90 kg / 85.77 lbs
~0 Gs
|
| 2 mm |
39.09 kg / 86.17 lbs
7 507 Gs
|
5.86 kg / 12.93 lbs
57.5 N
|
35.18 kg / 77.56 lbs
~0 Gs
|
| 3 mm |
35.13 kg / 77.45 lbs
7 117 Gs
|
5.27 kg / 11.62 lbs
51.7 N
|
31.62 kg / 69.70 lbs
~0 Gs
|
| 5 mm |
27.95 kg / 61.61 lbs
6 348 Gs
|
4.19 kg / 9.24 lbs
41.1 N
|
25.15 kg / 55.45 lbs
~0 Gs
|
| 10 mm |
14.94 kg / 32.94 lbs
4 642 Gs
|
2.24 kg / 4.94 lbs
22.0 N
|
13.45 kg / 29.65 lbs
~0 Gs
|
| 20 mm |
4.17 kg / 9.18 lbs
2 451 Gs
|
0.62 kg / 1.38 lbs
6.1 N
|
3.75 kg / 8.26 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.41 lbs
519 Gs
|
0.03 kg / 0.06 lbs
0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 60 mm |
0.08 kg / 0.18 lbs
347 Gs
|
0.01 kg / 0.03 lbs
0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.09 lbs
242 Gs
|
0.01 kg / 0.01 lbs
0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
175 Gs
|
0.00 kg / 0.01 lbs
0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
130 Gs
|
0.00 kg / 0.00 lbs
0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
99 Gs
|
0.00 kg / 0.00 lbs
0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 30x15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 30x15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.73 km/h
(6.59 m/s)
|
0.73 J | |
| 30 mm |
39.06 km/h
(10.85 m/s)
|
1.99 J | |
| 50 mm |
50.38 km/h
(13.99 m/s)
|
3.30 J | |
| 100 mm |
71.24 km/h
(19.79 m/s)
|
6.61 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 30x15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 30x15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 390 Mx | 183.9 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 30x15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.84 kg | Standard |
| Woda (dno rzeki) |
19.28 kg
(+2.44 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi tylko ~1% (teoretycznie).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig określano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża nośność.
BHP przy magnesach
Urazy ciała
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Ochrona urządzeń
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Dla uczulonych
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Wrażliwość na ciepło
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.
Rozprysk materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Siła neodymu
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
