MPL 30x15x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020389
GTIN/EAN: 5906301811886
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
33.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
16.84 kg / 165.22 N
Indukcja magnetyczna
413.45 mT / 4135 Gs
Powłoka
[NiCuNi] nikiel
24.48 ZŁ z VAT / szt. + cena za transport
19.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub skontaktuj się przez
formularz
na naszej stronie.
Udźwig a także budowę magnesów sprawdzisz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MPL 30x15x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x15x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020389 |
| GTIN/EAN | 5906301811886 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 33.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 16.84 kg / 165.22 N |
| Indukcja magnetyczna ~ ? | 413.45 mT / 4135 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Niniejsze wartości są rezultat symulacji matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 30x15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4133 Gs
413.3 mT
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
krytyczny poziom |
| 1 mm |
3754 Gs
375.4 mT
|
13.89 kg / 30.62 lbs
13889.5 g / 136.3 N
|
krytyczny poziom |
| 2 mm |
3365 Gs
336.5 mT
|
11.16 kg / 24.60 lbs
11159.2 g / 109.5 N
|
krytyczny poziom |
| 3 mm |
2988 Gs
298.8 mT
|
8.80 kg / 19.41 lbs
8803.6 g / 86.4 N
|
średnie ryzyko |
| 5 mm |
2321 Gs
232.1 mT
|
5.31 kg / 11.71 lbs
5309.9 g / 52.1 N
|
średnie ryzyko |
| 10 mm |
1225 Gs
122.5 mT
|
1.48 kg / 3.26 lbs
1480.1 g / 14.5 N
|
bezpieczny |
| 15 mm |
684 Gs
68.4 mT
|
0.46 kg / 1.02 lbs
461.6 g / 4.5 N
|
bezpieczny |
| 20 mm |
409 Gs
40.9 mT
|
0.16 kg / 0.36 lbs
164.8 g / 1.6 N
|
bezpieczny |
| 30 mm |
173 Gs
17.3 mT
|
0.03 kg / 0.07 lbs
29.6 g / 0.3 N
|
bezpieczny |
| 50 mm |
50 Gs
5.0 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 30x15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.37 kg / 7.43 lbs
3368.0 g / 33.0 N
|
| 1 mm | Stal (~0.2) |
2.78 kg / 6.12 lbs
2778.0 g / 27.3 N
|
| 2 mm | Stal (~0.2) |
2.23 kg / 4.92 lbs
2232.0 g / 21.9 N
|
| 3 mm | Stal (~0.2) |
1.76 kg / 3.88 lbs
1760.0 g / 17.3 N
|
| 5 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1062.0 g / 10.4 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 30x15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.05 kg / 11.14 lbs
5052.0 g / 49.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.37 kg / 7.43 lbs
3368.0 g / 33.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.68 kg / 3.71 lbs
1684.0 g / 16.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.42 kg / 18.56 lbs
8420.0 g / 82.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 30x15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 1 mm |
|
2.11 kg / 4.64 lbs
2105.0 g / 20.7 N
|
| 2 mm |
|
4.21 kg / 9.28 lbs
4210.0 g / 41.3 N
|
| 3 mm |
|
6.31 kg / 13.92 lbs
6315.0 g / 62.0 N
|
| 5 mm |
|
10.53 kg / 23.20 lbs
10525.0 g / 103.3 N
|
| 10 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
| 11 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
| 12 mm |
|
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 30x15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.84 kg / 37.13 lbs
16840.0 g / 165.2 N
|
OK |
| 40 °C | -2.2% |
16.47 kg / 36.31 lbs
16469.5 g / 161.6 N
|
OK |
| 60 °C | -4.4% |
16.10 kg / 35.49 lbs
16099.0 g / 157.9 N
|
|
| 80 °C | -6.6% |
15.73 kg / 34.68 lbs
15728.6 g / 154.3 N
|
|
| 100 °C | -28.8% |
11.99 kg / 26.43 lbs
11990.1 g / 117.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 30x15x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
47.39 kg / 104.48 lbs
5 357 Gs
|
7.11 kg / 15.67 lbs
7109 g / 69.7 N
|
N/A |
| 1 mm |
43.23 kg / 95.30 lbs
7 895 Gs
|
6.48 kg / 14.29 lbs
6484 g / 63.6 N
|
38.90 kg / 85.77 lbs
~0 Gs
|
| 2 mm |
39.09 kg / 86.17 lbs
7 507 Gs
|
5.86 kg / 12.93 lbs
5863 g / 57.5 N
|
35.18 kg / 77.56 lbs
~0 Gs
|
| 3 mm |
35.13 kg / 77.45 lbs
7 117 Gs
|
5.27 kg / 11.62 lbs
5270 g / 51.7 N
|
31.62 kg / 69.70 lbs
~0 Gs
|
| 5 mm |
27.95 kg / 61.61 lbs
6 348 Gs
|
4.19 kg / 9.24 lbs
4192 g / 41.1 N
|
25.15 kg / 55.45 lbs
~0 Gs
|
| 10 mm |
14.94 kg / 32.94 lbs
4 642 Gs
|
2.24 kg / 4.94 lbs
2242 g / 22.0 N
|
13.45 kg / 29.65 lbs
~0 Gs
|
| 20 mm |
4.17 kg / 9.18 lbs
2 451 Gs
|
0.62 kg / 1.38 lbs
625 g / 6.1 N
|
3.75 kg / 8.26 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.41 lbs
519 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 60 mm |
0.08 kg / 0.18 lbs
347 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.09 lbs
242 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
175 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
130 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
99 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 30x15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 30x15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.73 km/h
(6.59 m/s)
|
0.73 J | |
| 30 mm |
39.06 km/h
(10.85 m/s)
|
1.99 J | |
| 50 mm |
50.38 km/h
(13.99 m/s)
|
3.30 J | |
| 100 mm |
71.24 km/h
(19.79 m/s)
|
6.61 J |
Tabela 9: Odporność na korozję
MPL 30x15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 30x15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 390 Mx | 183.9 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 30x15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.84 kg | Standard |
| Woda (dno rzeki) |
19.28 kg
(+2.44 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny to min. 10 mm
- o szlifowanej powierzchni styku
- w warunkach bezszczelinowych (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część strumienia marnuje się na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Ochrona urządzeń
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Implanty medyczne
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Kruchość materiału
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Siła zgniatająca
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Samozapłon
Pył generowany podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nadwrażliwość na metale
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może powodować silną reakcję alergiczną. Wskazane jest używanie rękawic bezlateksowych.
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Zagrożenie dla najmłodszych
Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
