MPL 30x15x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020389
GTIN/EAN: 5906301811886
Długość
30 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
33.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
16.84 kg / 165.22 N
Indukcja magnetyczna
413.45 mT / 4135 Gs
Powłoka
[NiCuNi] nikiel
24.48 ZŁ z VAT / szt. + cena za transport
19.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie zostaw wiadomość korzystając z
formularz kontaktowy
przez naszą stronę.
Parametry i wygląd magnesu neodymowego skontrolujesz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MPL 30x15x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x15x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020389 |
| GTIN/EAN | 5906301811886 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 33.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 16.84 kg / 165.22 N |
| Indukcja magnetyczna ~ ? | 413.45 mT / 4135 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Poniższe informacje stanowią rezultat kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 30x15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4133 Gs
413.3 mT
|
16.84 kg / 16840.0 g
165.2 N
|
niebezpieczny! |
| 1 mm |
3754 Gs
375.4 mT
|
13.89 kg / 13889.5 g
136.3 N
|
niebezpieczny! |
| 2 mm |
3365 Gs
336.5 mT
|
11.16 kg / 11159.2 g
109.5 N
|
niebezpieczny! |
| 3 mm |
2988 Gs
298.8 mT
|
8.80 kg / 8803.6 g
86.4 N
|
uwaga |
| 5 mm |
2321 Gs
232.1 mT
|
5.31 kg / 5309.9 g
52.1 N
|
uwaga |
| 10 mm |
1225 Gs
122.5 mT
|
1.48 kg / 1480.1 g
14.5 N
|
niskie ryzyko |
| 15 mm |
684 Gs
68.4 mT
|
0.46 kg / 461.6 g
4.5 N
|
niskie ryzyko |
| 20 mm |
409 Gs
40.9 mT
|
0.16 kg / 164.8 g
1.6 N
|
niskie ryzyko |
| 30 mm |
173 Gs
17.3 mT
|
0.03 kg / 29.6 g
0.3 N
|
niskie ryzyko |
| 50 mm |
50 Gs
5.0 mT
|
0.00 kg / 2.4 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 30x15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.37 kg / 3368.0 g
33.0 N
|
| 1 mm | Stal (~0.2) |
2.78 kg / 2778.0 g
27.3 N
|
| 2 mm | Stal (~0.2) |
2.23 kg / 2232.0 g
21.9 N
|
| 3 mm | Stal (~0.2) |
1.76 kg / 1760.0 g
17.3 N
|
| 5 mm | Stal (~0.2) |
1.06 kg / 1062.0 g
10.4 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 296.0 g
2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 92.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 30x15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.05 kg / 5052.0 g
49.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.37 kg / 3368.0 g
33.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.68 kg / 1684.0 g
16.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.42 kg / 8420.0 g
82.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 30x15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 842.0 g
8.3 N
|
| 1 mm |
|
2.11 kg / 2105.0 g
20.7 N
|
| 2 mm |
|
4.21 kg / 4210.0 g
41.3 N
|
| 5 mm |
|
10.53 kg / 10525.0 g
103.3 N
|
| 10 mm |
|
16.84 kg / 16840.0 g
165.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 30x15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.84 kg / 16840.0 g
165.2 N
|
OK |
| 40 °C | -2.2% |
16.47 kg / 16469.5 g
161.6 N
|
OK |
| 60 °C | -4.4% |
16.10 kg / 16099.0 g
157.9 N
|
|
| 80 °C | -6.6% |
15.73 kg / 15728.6 g
154.3 N
|
|
| 100 °C | -28.8% |
11.99 kg / 11990.1 g
117.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 30x15x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
47.39 kg / 47392 g
464.9 N
5 357 Gs
|
N/A |
| 1 mm |
43.23 kg / 43227 g
424.1 N
7 895 Gs
|
38.90 kg / 38904 g
381.7 N
~0 Gs
|
| 2 mm |
39.09 kg / 39088 g
383.5 N
7 507 Gs
|
35.18 kg / 35179 g
345.1 N
~0 Gs
|
| 3 mm |
35.13 kg / 35130 g
344.6 N
7 117 Gs
|
31.62 kg / 31617 g
310.2 N
~0 Gs
|
| 5 mm |
27.95 kg / 27947 g
274.2 N
6 348 Gs
|
25.15 kg / 25152 g
246.7 N
~0 Gs
|
| 10 mm |
14.94 kg / 14943 g
146.6 N
4 642 Gs
|
13.45 kg / 13449 g
131.9 N
~0 Gs
|
| 20 mm |
4.17 kg / 4165 g
40.9 N
2 451 Gs
|
3.75 kg / 3749 g
36.8 N
~0 Gs
|
| 50 mm |
0.19 kg / 187 g
1.8 N
519 Gs
|
0.17 kg / 168 g
1.6 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 30x15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 30x15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.73 km/h
(6.59 m/s)
|
0.73 J | |
| 30 mm |
39.06 km/h
(10.85 m/s)
|
1.99 J | |
| 50 mm |
50.38 km/h
(13.99 m/s)
|
3.30 J | |
| 100 mm |
71.24 km/h
(19.79 m/s)
|
6.61 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 30x15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 30x15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 390 Mx | 183.9 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.84 kg | Standard |
| Woda (dno rzeki) |
19.28 kg
(+2.44 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (bez powłok)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Bezpieczna praca z magnesami neodymowymi
Uszkodzenia ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Ryzyko pęknięcia
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Chronić przed dziećmi
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Zagrożenie życia
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Siła neodymu
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Alergia na nikiel
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
