Magnesy neodymowe – najsilniejsze na rynku

Chcesz kupić naprawdę silne magnesy? Oferujemy szeroki wybór magnesów o różnych kształtach i wymiarach. To najlepszy wybór do użytku w domu, warsztatu oraz modelarstwa. Przejrzyj asortyment z szybką wysyłką.

zobacz cennik i wymiary

Magnet fishing: mocne zestawy F200/F400

Odkryj pasję związaną z eksploracją dna! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i ogromnego udźwigu. Nierdzewna konstrukcja oraz mocne linki sprawdzą się w każdej wodzie.

znajdź sprzęt do poszukiwań

Mocowania magnetyczne dla przemysłu

Niezawodne rozwiązania do mocowania bez wiercenia. Mocowania gwintowane (M8, M10, M12) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy instalacji lamp, sensorów oraz reklam.

zobacz dostępne gwinty

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 15x10x2 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020388

GTIN/EAN: 5906301811879

5.00

Długość

15 mm [±0,1 mm]

Szerokość

10 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

2.25 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.57 kg / 15.45 N

Indukcja magnetyczna

180.53 mT / 1805 Gs

Powłoka

[NiCuNi] nikiel

1.316 z VAT / szt. + cena za transport

1.070 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
1.070 ZŁ
1.316 ZŁ
cena od 600 szt.
1.006 ZŁ
1.237 ZŁ
cena od 2350 szt.
0.942 ZŁ
1.158 ZŁ
Chcesz skonsultować wybór?

Dzwoń do nas +48 888 99 98 98 alternatywnie daj znać poprzez formularz zapytania na stronie kontaktowej.
Parametry oraz formę magnesu zweryfikujesz u nas w kalkulatorze mocy.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Szczegóły techniczne - MPL 15x10x2 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 15x10x2 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020388
GTIN/EAN 5906301811879
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 15 mm [±0,1 mm]
Szerokość 10 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 2.25 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.57 kg / 15.45 N
Indukcja magnetyczna ~ ? 180.53 mT / 1805 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 15x10x2 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza inżynierska magnesu neodymowego - raport

Poniższe informacje są bezpośredni efekt analizy matematycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MPL 15x10x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1805 Gs
180.5 mT
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
słaby uchwyt
1 mm 1628 Gs
162.8 mT
1.28 kg / 2.82 lbs
1278.3 g / 12.5 N
słaby uchwyt
2 mm 1394 Gs
139.4 mT
0.94 kg / 2.06 lbs
936.3 g / 9.2 N
słaby uchwyt
3 mm 1152 Gs
115.2 mT
0.64 kg / 1.41 lbs
639.9 g / 6.3 N
słaby uchwyt
5 mm 751 Gs
75.1 mT
0.27 kg / 0.60 lbs
271.5 g / 2.7 N
słaby uchwyt
10 mm 262 Gs
26.2 mT
0.03 kg / 0.07 lbs
33.1 g / 0.3 N
słaby uchwyt
15 mm 110 Gs
11.0 mT
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
słaby uchwyt
20 mm 54 Gs
5.4 mT
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
słaby uchwyt
30 mm 18 Gs
1.8 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
słaby uchwyt
50 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt

Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 15x10x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.31 kg / 0.69 lbs
314.0 g / 3.1 N
1 mm Stal (~0.2) 0.26 kg / 0.56 lbs
256.0 g / 2.5 N
2 mm Stal (~0.2) 0.19 kg / 0.41 lbs
188.0 g / 1.8 N
3 mm Stal (~0.2) 0.13 kg / 0.28 lbs
128.0 g / 1.3 N
5 mm Stal (~0.2) 0.05 kg / 0.12 lbs
54.0 g / 0.5 N
10 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 15x10x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.47 kg / 1.04 lbs
471.0 g / 4.6 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.79 kg / 1.73 lbs
785.0 g / 7.7 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 15x10x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.16 kg / 0.35 lbs
157.0 g / 1.5 N
1 mm
25%
0.39 kg / 0.87 lbs
392.5 g / 3.9 N
2 mm
50%
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
3 mm
75%
1.18 kg / 2.60 lbs
1177.5 g / 11.6 N
5 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
10 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
11 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
12 mm
100%
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 15x10x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
OK
40 °C -2.2% 1.54 kg / 3.39 lbs
1535.5 g / 15.1 N
OK
60 °C -4.4% 1.50 kg / 3.31 lbs
1500.9 g / 14.7 N
80 °C -6.6% 1.47 kg / 3.23 lbs
1466.4 g / 14.4 N
100 °C -28.8% 1.12 kg / 2.46 lbs
1117.8 g / 11.0 N

Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 15x10x2 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 3.01 kg / 6.64 lbs
3 196 Gs
0.45 kg / 1.00 lbs
452 g / 4.4 N
N/A
1 mm 2.76 kg / 6.09 lbs
3 456 Gs
0.41 kg / 0.91 lbs
414 g / 4.1 N
2.49 kg / 5.48 lbs
~0 Gs
2 mm 2.45 kg / 5.41 lbs
3 257 Gs
0.37 kg / 0.81 lbs
368 g / 3.6 N
2.21 kg / 4.87 lbs
~0 Gs
3 mm 2.12 kg / 4.68 lbs
3 029 Gs
0.32 kg / 0.70 lbs
318 g / 3.1 N
1.91 kg / 4.21 lbs
~0 Gs
5 mm 1.49 kg / 3.30 lbs
2 543 Gs
0.22 kg / 0.49 lbs
224 g / 2.2 N
1.35 kg / 2.97 lbs
~0 Gs
10 mm 0.52 kg / 1.15 lbs
1 501 Gs
0.08 kg / 0.17 lbs
78 g / 0.8 N
0.47 kg / 1.03 lbs
~0 Gs
20 mm 0.06 kg / 0.14 lbs
524 Gs
0.01 kg / 0.02 lbs
10 g / 0.1 N
0.06 kg / 0.13 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
60 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
37 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
24 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
16 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
12 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
9 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 15x10x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 5.0 cm
Implant słuchowy 10 Gs (1.0 mT) 4.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 2.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 15x10x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 26.99 km/h
(7.50 m/s)
0.06 J
30 mm 46.15 km/h
(12.82 m/s)
0.18 J
50 mm 59.57 km/h
(16.55 m/s)
0.31 J
100 mm 84.24 km/h
(23.40 m/s)
0.62 J

Tabela 9: Trwałość powłoki antykorozyjnej
MPL 15x10x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MPL 15x10x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 3 194 Mx 31.9 µWb
Współczynnik Pc 0.22 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MPL 15x10x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.57 kg Standard
Woda (dno rzeki) 1.80 kg
(+0.23 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Udźwig w pionie

*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ~20-30% nominalnego udźwigu.

2. Efektywność, a grubość stali

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.

3. Wytrzymałość temperaturowa

*Dla standardowych magnesów maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020388-2026
Przelicznik magnesów
Siła (udźwig)

Moc pola

Inne produkty

Produkt ten to bardzo silny magnes w kształcie płytki wykonany z materiału NdFeB, co przy wymiarach 15x10x2 mm i wadze 2.25 g gwarantuje najwyższą jakość połączenia. Jako sztabka magnetyczna o dużej mocy (ok. 1.57 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Ponadto, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Rozdzielanie magnesów blokowych wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 15x10x2 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem oczyścić i odtłuścić powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (15x10 mm), co jest idealne do montażu na płasko. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 15x10x2 mm, co przy wadze 2.25 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.57 kg (siła ~15.45 N), co przy tak kompaktowym kształcie świadczy o wysokiej klasie materiału. Produkt spełnia normy dla magnesów klasy N38.

Zalety oraz wady magnesów z neodymu Nd2Fe14B.

Korzyści

Neodymy to nie tylko moc przyciągania, ale także inne istotne cechy, takie jak::
  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
  • Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
  • Dzięki powłoce (NiCuNi, złoto, srebro) mają estetyczny, metaliczny wygląd.
  • Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
  • Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
  • Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
  • Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.

Minusy

Mimo zalet, posiadają też wady:
  • Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.

Analiza siły trzymania

Najlepsza nośność magnesu w idealnych parametrachco się na to składa?

Informacja o udźwigu to rezultat pomiaru dla optymalnej konfiguracji, obejmującej:
  • na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
  • posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
  • o idealnie gładkiej powierzchni styku
  • bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
  • przy prostopadłym wektorze siły (kąt 90 stopni)
  • przy temperaturze pokojowej

Czynniki determinujące udźwig w warunkach realnych

Na skuteczność trzymania wpływają parametry środowiska pracy, takie jak (od najważniejszych):
  • Szczelina powietrzna (między magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
  • Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
  • Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
  • Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
  • Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.

Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.

Instrukcja bezpiecznej obsługi magnesów
Podatność na pękanie

Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.

Nie lekceważ mocy

Używaj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.

Ryzyko złamań

Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.

Niszczenie danych

Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.

Wrażliwość na ciepło

Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).

Uwaga: zadławienie

Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.

Elektronika precyzyjna

Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.

Łatwopalność

Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.

Ryzyko uczulenia

Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.

Wpływ na zdrowie

Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.

Ostrzeżenie! Chcesz wiedzieć więcej? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98