MPL 80x40x15 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020177
GTIN/EAN: 5906301811831
Długość
80 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
360 g
Kierunek magnesowania
↑ osiowy
Udźwig
73.57 kg / 721.75 N
Indukcja magnetyczna
285.78 mT / 2858 Gs
Powłoka
[NiCuNi] nikiel
139.54 ZŁ z VAT / szt. + cena za transport
113.45 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie skontaktuj się za pomocą
formularz zgłoszeniowy
w sekcji kontakt.
Parametry i kształt elementów magnetycznych przetestujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 80x40x15 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 80x40x15 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020177 |
| GTIN/EAN | 5906301811831 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 80 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 360 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 73.57 kg / 721.75 N |
| Indukcja magnetyczna ~ ? | 285.78 mT / 2858 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Niniejsze dane stanowią rezultat kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 80x40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2857 Gs
285.7 mT
|
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
niebezpieczny! |
| 1 mm |
2778 Gs
277.8 mT
|
69.55 kg / 153.32 lbs
69546.1 g / 682.2 N
|
niebezpieczny! |
| 2 mm |
2693 Gs
269.3 mT
|
65.33 kg / 144.03 lbs
65331.2 g / 640.9 N
|
niebezpieczny! |
| 3 mm |
2603 Gs
260.3 mT
|
61.05 kg / 134.59 lbs
61047.5 g / 598.9 N
|
niebezpieczny! |
| 5 mm |
2415 Gs
241.5 mT
|
52.56 kg / 115.87 lbs
52559.7 g / 515.6 N
|
niebezpieczny! |
| 10 mm |
1943 Gs
194.3 mT
|
34.02 kg / 75.00 lbs
34021.1 g / 333.7 N
|
niebezpieczny! |
| 15 mm |
1527 Gs
152.7 mT
|
21.01 kg / 46.31 lbs
21007.7 g / 206.1 N
|
niebezpieczny! |
| 20 mm |
1192 Gs
119.2 mT
|
12.81 kg / 28.24 lbs
12808.1 g / 125.6 N
|
niebezpieczny! |
| 30 mm |
736 Gs
73.6 mT
|
4.89 kg / 10.77 lbs
4886.6 g / 47.9 N
|
uwaga |
| 50 mm |
313 Gs
31.3 mT
|
0.88 kg / 1.95 lbs
884.8 g / 8.7 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 80x40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.71 kg / 32.44 lbs
14714.0 g / 144.3 N
|
| 1 mm | Stal (~0.2) |
13.91 kg / 30.67 lbs
13910.0 g / 136.5 N
|
| 2 mm | Stal (~0.2) |
13.07 kg / 28.81 lbs
13066.0 g / 128.2 N
|
| 3 mm | Stal (~0.2) |
12.21 kg / 26.92 lbs
12210.0 g / 119.8 N
|
| 5 mm | Stal (~0.2) |
10.51 kg / 23.17 lbs
10512.0 g / 103.1 N
|
| 10 mm | Stal (~0.2) |
6.80 kg / 15.00 lbs
6804.0 g / 66.7 N
|
| 15 mm | Stal (~0.2) |
4.20 kg / 9.26 lbs
4202.0 g / 41.2 N
|
| 20 mm | Stal (~0.2) |
2.56 kg / 5.65 lbs
2562.0 g / 25.1 N
|
| 30 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
978.0 g / 9.6 N
|
| 50 mm | Stal (~0.2) |
0.18 kg / 0.39 lbs
176.0 g / 1.7 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 80x40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
22.07 kg / 48.66 lbs
22071.0 g / 216.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.71 kg / 32.44 lbs
14714.0 g / 144.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.36 kg / 16.22 lbs
7357.0 g / 72.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
36.79 kg / 81.10 lbs
36785.0 g / 360.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 80x40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.45 kg / 5.41 lbs
2452.3 g / 24.1 N
|
| 1 mm |
|
6.13 kg / 13.52 lbs
6130.8 g / 60.1 N
|
| 2 mm |
|
12.26 kg / 27.03 lbs
12261.7 g / 120.3 N
|
| 3 mm |
|
18.39 kg / 40.55 lbs
18392.5 g / 180.4 N
|
| 5 mm |
|
30.65 kg / 67.58 lbs
30654.2 g / 300.7 N
|
| 10 mm |
|
61.31 kg / 135.16 lbs
61308.3 g / 601.4 N
|
| 11 mm |
|
67.44 kg / 148.68 lbs
67439.2 g / 661.6 N
|
| 12 mm |
|
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 80x40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
OK |
| 40 °C | -2.2% |
71.95 kg / 158.63 lbs
71951.5 g / 705.8 N
|
OK |
| 60 °C | -4.4% |
70.33 kg / 155.06 lbs
70332.9 g / 690.0 N
|
|
| 80 °C | -6.6% |
68.71 kg / 151.49 lbs
68714.4 g / 674.1 N
|
|
| 100 °C | -28.8% |
52.38 kg / 115.48 lbs
52381.8 g / 513.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 80x40x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
161.08 kg / 355.13 lbs
4 384 Gs
|
24.16 kg / 53.27 lbs
24163 g / 237.0 N
|
N/A |
| 1 mm |
156.77 kg / 345.63 lbs
5 638 Gs
|
23.52 kg / 51.84 lbs
23516 g / 230.7 N
|
141.10 kg / 311.07 lbs
~0 Gs
|
| 2 mm |
152.27 kg / 335.70 lbs
5 556 Gs
|
22.84 kg / 50.36 lbs
22841 g / 224.1 N
|
137.05 kg / 302.13 lbs
~0 Gs
|
| 3 mm |
147.69 kg / 325.60 lbs
5 472 Gs
|
22.15 kg / 48.84 lbs
22153 g / 217.3 N
|
132.92 kg / 293.04 lbs
~0 Gs
|
| 5 mm |
138.36 kg / 305.04 lbs
5 297 Gs
|
20.75 kg / 45.76 lbs
20754 g / 203.6 N
|
124.53 kg / 274.53 lbs
~0 Gs
|
| 10 mm |
115.08 kg / 253.71 lbs
4 830 Gs
|
17.26 kg / 38.06 lbs
17262 g / 169.3 N
|
103.57 kg / 228.34 lbs
~0 Gs
|
| 20 mm |
74.49 kg / 164.22 lbs
3 886 Gs
|
11.17 kg / 24.63 lbs
11174 g / 109.6 N
|
67.04 kg / 147.80 lbs
~0 Gs
|
| 50 mm |
17.20 kg / 37.91 lbs
1 867 Gs
|
2.58 kg / 5.69 lbs
2580 g / 25.3 N
|
15.48 kg / 34.12 lbs
~0 Gs
|
| 60 mm |
10.70 kg / 23.59 lbs
1 473 Gs
|
1.60 kg / 3.54 lbs
1605 g / 15.7 N
|
9.63 kg / 21.23 lbs
~0 Gs
|
| 70 mm |
6.78 kg / 14.94 lbs
1 172 Gs
|
1.02 kg / 2.24 lbs
1017 g / 10.0 N
|
6.10 kg / 13.45 lbs
~0 Gs
|
| 80 mm |
4.38 kg / 9.65 lbs
942 Gs
|
0.66 kg / 1.45 lbs
657 g / 6.4 N
|
3.94 kg / 8.69 lbs
~0 Gs
|
| 90 mm |
2.89 kg / 6.36 lbs
765 Gs
|
0.43 kg / 0.95 lbs
433 g / 4.2 N
|
2.60 kg / 5.72 lbs
~0 Gs
|
| 100 mm |
1.94 kg / 4.27 lbs
627 Gs
|
0.29 kg / 0.64 lbs
291 g / 2.9 N
|
1.74 kg / 3.84 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 80x40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 16.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 80x40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.11 km/h
(5.03 m/s)
|
4.56 J | |
| 30 mm |
25.99 km/h
(7.22 m/s)
|
9.38 J | |
| 50 mm |
32.48 km/h
(9.02 m/s)
|
14.65 J | |
| 100 mm |
45.61 km/h
(12.67 m/s)
|
28.89 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 80x40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 80x40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 94 833 Mx | 948.3 µWb |
| Współczynnik Pc | 0.33 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 80x40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 73.57 kg | Standard |
| Woda (dno rzeki) |
84.24 kg
(+10.67 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.33
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni kontaktu
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Praktyczny udźwig: czynniki wpływające
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona w powietrzu.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Bezpieczna praca z magnesami neodymowymi
Alergia na nikiel
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Wpływ na zdrowie
Osoby z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Uwaga: zadławienie
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Ochrona dłoni
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Niszczenie danych
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Siła neodymu
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
