MPL 80x40x15 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020177
GTIN/EAN: 5906301811831
Długość
80 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
360 g
Kierunek magnesowania
↑ osiowy
Udźwig
73.57 kg / 721.75 N
Indukcja magnetyczna
285.78 mT / 2858 Gs
Powłoka
[NiCuNi] nikiel
139.54 ZŁ z VAT / szt. + cena za transport
113.45 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Dzwoń do nas
+48 888 99 98 98
lub daj znać przez
formularz
na naszej stronie.
Moc i budowę magnesów neodymowych skontrolujesz dzięki naszemu
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 80x40x15 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 80x40x15 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020177 |
| GTIN/EAN | 5906301811831 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 80 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 360 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 73.57 kg / 721.75 N |
| Indukcja magnetyczna ~ ? | 285.78 mT / 2858 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione dane są bezpośredni efekt analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
MPL 80x40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2857 Gs
285.7 mT
|
73.57 kg / 73570.0 g
721.7 N
|
niebezpieczny! |
| 1 mm |
2778 Gs
277.8 mT
|
69.55 kg / 69546.1 g
682.2 N
|
niebezpieczny! |
| 2 mm |
2693 Gs
269.3 mT
|
65.33 kg / 65331.2 g
640.9 N
|
niebezpieczny! |
| 3 mm |
2603 Gs
260.3 mT
|
61.05 kg / 61047.5 g
598.9 N
|
niebezpieczny! |
| 5 mm |
2415 Gs
241.5 mT
|
52.56 kg / 52559.7 g
515.6 N
|
niebezpieczny! |
| 10 mm |
1943 Gs
194.3 mT
|
34.02 kg / 34021.1 g
333.7 N
|
niebezpieczny! |
| 15 mm |
1527 Gs
152.7 mT
|
21.01 kg / 21007.7 g
206.1 N
|
niebezpieczny! |
| 20 mm |
1192 Gs
119.2 mT
|
12.81 kg / 12808.1 g
125.6 N
|
niebezpieczny! |
| 30 mm |
736 Gs
73.6 mT
|
4.89 kg / 4886.6 g
47.9 N
|
uwaga |
| 50 mm |
313 Gs
31.3 mT
|
0.88 kg / 884.8 g
8.7 N
|
słaby uchwyt |
MPL 80x40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.71 kg / 14714.0 g
144.3 N
|
| 1 mm | Stal (~0.2) |
13.91 kg / 13910.0 g
136.5 N
|
| 2 mm | Stal (~0.2) |
13.07 kg / 13066.0 g
128.2 N
|
| 3 mm | Stal (~0.2) |
12.21 kg / 12210.0 g
119.8 N
|
| 5 mm | Stal (~0.2) |
10.51 kg / 10512.0 g
103.1 N
|
| 10 mm | Stal (~0.2) |
6.80 kg / 6804.0 g
66.7 N
|
| 15 mm | Stal (~0.2) |
4.20 kg / 4202.0 g
41.2 N
|
| 20 mm | Stal (~0.2) |
2.56 kg / 2562.0 g
25.1 N
|
| 30 mm | Stal (~0.2) |
0.98 kg / 978.0 g
9.6 N
|
| 50 mm | Stal (~0.2) |
0.18 kg / 176.0 g
1.7 N
|
MPL 80x40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
22.07 kg / 22071.0 g
216.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.71 kg / 14714.0 g
144.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.36 kg / 7357.0 g
72.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
36.79 kg / 36785.0 g
360.9 N
|
MPL 80x40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.45 kg / 2452.3 g
24.1 N
|
| 1 mm |
|
6.13 kg / 6130.8 g
60.1 N
|
| 2 mm |
|
12.26 kg / 12261.7 g
120.3 N
|
| 5 mm |
|
30.65 kg / 30654.2 g
300.7 N
|
| 10 mm |
|
61.31 kg / 61308.3 g
601.4 N
|
MPL 80x40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
73.57 kg / 73570.0 g
721.7 N
|
OK |
| 40 °C | -2.2% |
71.95 kg / 71951.5 g
705.8 N
|
OK |
| 60 °C | -4.4% |
70.33 kg / 70332.9 g
690.0 N
|
|
| 80 °C | -6.6% |
68.71 kg / 68714.4 g
674.1 N
|
|
| 100 °C | -28.8% |
52.38 kg / 52381.8 g
513.9 N
|
MPL 80x40x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
161.08 kg / 161083 g
1580.2 N
4 384 Gs
|
N/A |
| 1 mm |
156.77 kg / 156775 g
1538.0 N
5 638 Gs
|
141.10 kg / 141097 g
1384.2 N
~0 Gs
|
| 2 mm |
152.27 kg / 152273 g
1493.8 N
5 556 Gs
|
137.05 kg / 137046 g
1344.4 N
~0 Gs
|
| 3 mm |
147.69 kg / 147688 g
1448.8 N
5 472 Gs
|
132.92 kg / 132920 g
1303.9 N
~0 Gs
|
| 5 mm |
138.36 kg / 138363 g
1357.3 N
5 297 Gs
|
124.53 kg / 124527 g
1221.6 N
~0 Gs
|
| 10 mm |
115.08 kg / 115081 g
1128.9 N
4 830 Gs
|
103.57 kg / 103573 g
1016.0 N
~0 Gs
|
| 20 mm |
74.49 kg / 74490 g
730.7 N
3 886 Gs
|
67.04 kg / 67041 g
657.7 N
~0 Gs
|
| 50 mm |
17.20 kg / 17197 g
168.7 N
1 867 Gs
|
15.48 kg / 15477 g
151.8 N
~0 Gs
|
MPL 80x40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 16.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
MPL 80x40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.11 km/h
(5.03 m/s)
|
4.56 J | |
| 30 mm |
25.99 km/h
(7.22 m/s)
|
9.38 J | |
| 50 mm |
32.48 km/h
(9.02 m/s)
|
14.65 J | |
| 100 mm |
45.61 km/h
(12.67 m/s)
|
28.89 J |
MPL 80x40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 80x40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 94 833 Mx | 948.3 µWb |
| Współczynnik Pc | 0.33 | Niski (Płaski) |
MPL 80x40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 73.57 kg | Standard |
| Woda (dno rzeki) |
84.24 kg
(+10.67 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.33
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) mają estetyczny, błyszczący wygląd.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Odstęp (pomiędzy magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Wektor obciążenia – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Uszkodzenia czujników
Silne pole magnetyczne wpływa negatywnie na działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Ryzyko złamań
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Interferencja medyczna
Pacjenci z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem niepowołanych osób.
Ostrzeżenie dla alergików
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Nie lekceważ mocy
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Ryzyko rozmagnesowania
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Kruchy spiek
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
