MPL 80x40x15 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020177
GTIN/EAN: 5906301811831
Długość
80 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
360 g
Kierunek magnesowania
↑ osiowy
Udźwig
73.57 kg / 721.75 N
Indukcja magnetyczna
285.78 mT / 2858 Gs
Powłoka
[NiCuNi] nikiel
139.54 ZŁ z VAT / szt. + cena za transport
113.45 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub pisz poprzez
formularz kontaktowy
na naszej stronie.
Siłę oraz budowę magnesów przetestujesz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MPL 80x40x15 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 80x40x15 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020177 |
| GTIN/EAN | 5906301811831 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 80 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 360 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 73.57 kg / 721.75 N |
| Indukcja magnetyczna ~ ? | 285.78 mT / 2858 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Przedstawione wartości są rezultat analizy matematycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 80x40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2857 Gs
285.7 mT
|
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
krytyczny poziom |
| 1 mm |
2778 Gs
277.8 mT
|
69.55 kg / 153.32 lbs
69546.1 g / 682.2 N
|
krytyczny poziom |
| 2 mm |
2693 Gs
269.3 mT
|
65.33 kg / 144.03 lbs
65331.2 g / 640.9 N
|
krytyczny poziom |
| 3 mm |
2603 Gs
260.3 mT
|
61.05 kg / 134.59 lbs
61047.5 g / 598.9 N
|
krytyczny poziom |
| 5 mm |
2415 Gs
241.5 mT
|
52.56 kg / 115.87 lbs
52559.7 g / 515.6 N
|
krytyczny poziom |
| 10 mm |
1943 Gs
194.3 mT
|
34.02 kg / 75.00 lbs
34021.1 g / 333.7 N
|
krytyczny poziom |
| 15 mm |
1527 Gs
152.7 mT
|
21.01 kg / 46.31 lbs
21007.7 g / 206.1 N
|
krytyczny poziom |
| 20 mm |
1192 Gs
119.2 mT
|
12.81 kg / 28.24 lbs
12808.1 g / 125.6 N
|
krytyczny poziom |
| 30 mm |
736 Gs
73.6 mT
|
4.89 kg / 10.77 lbs
4886.6 g / 47.9 N
|
średnie ryzyko |
| 50 mm |
313 Gs
31.3 mT
|
0.88 kg / 1.95 lbs
884.8 g / 8.7 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 80x40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.71 kg / 32.44 lbs
14714.0 g / 144.3 N
|
| 1 mm | Stal (~0.2) |
13.91 kg / 30.67 lbs
13910.0 g / 136.5 N
|
| 2 mm | Stal (~0.2) |
13.07 kg / 28.81 lbs
13066.0 g / 128.2 N
|
| 3 mm | Stal (~0.2) |
12.21 kg / 26.92 lbs
12210.0 g / 119.8 N
|
| 5 mm | Stal (~0.2) |
10.51 kg / 23.17 lbs
10512.0 g / 103.1 N
|
| 10 mm | Stal (~0.2) |
6.80 kg / 15.00 lbs
6804.0 g / 66.7 N
|
| 15 mm | Stal (~0.2) |
4.20 kg / 9.26 lbs
4202.0 g / 41.2 N
|
| 20 mm | Stal (~0.2) |
2.56 kg / 5.65 lbs
2562.0 g / 25.1 N
|
| 30 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
978.0 g / 9.6 N
|
| 50 mm | Stal (~0.2) |
0.18 kg / 0.39 lbs
176.0 g / 1.7 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 80x40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
22.07 kg / 48.66 lbs
22071.0 g / 216.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.71 kg / 32.44 lbs
14714.0 g / 144.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.36 kg / 16.22 lbs
7357.0 g / 72.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
36.79 kg / 81.10 lbs
36785.0 g / 360.9 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 80x40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.45 kg / 5.41 lbs
2452.3 g / 24.1 N
|
| 1 mm |
|
6.13 kg / 13.52 lbs
6130.8 g / 60.1 N
|
| 2 mm |
|
12.26 kg / 27.03 lbs
12261.7 g / 120.3 N
|
| 3 mm |
|
18.39 kg / 40.55 lbs
18392.5 g / 180.4 N
|
| 5 mm |
|
30.65 kg / 67.58 lbs
30654.2 g / 300.7 N
|
| 10 mm |
|
61.31 kg / 135.16 lbs
61308.3 g / 601.4 N
|
| 11 mm |
|
67.44 kg / 148.68 lbs
67439.2 g / 661.6 N
|
| 12 mm |
|
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 80x40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
73.57 kg / 162.19 lbs
73570.0 g / 721.7 N
|
OK |
| 40 °C | -2.2% |
71.95 kg / 158.63 lbs
71951.5 g / 705.8 N
|
OK |
| 60 °C | -4.4% |
70.33 kg / 155.06 lbs
70332.9 g / 690.0 N
|
|
| 80 °C | -6.6% |
68.71 kg / 151.49 lbs
68714.4 g / 674.1 N
|
|
| 100 °C | -28.8% |
52.38 kg / 115.48 lbs
52381.8 g / 513.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 80x40x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
161.08 kg / 355.13 lbs
4 384 Gs
|
24.16 kg / 53.27 lbs
24163 g / 237.0 N
|
N/A |
| 1 mm |
156.77 kg / 345.63 lbs
5 638 Gs
|
23.52 kg / 51.84 lbs
23516 g / 230.7 N
|
141.10 kg / 311.07 lbs
~0 Gs
|
| 2 mm |
152.27 kg / 335.70 lbs
5 556 Gs
|
22.84 kg / 50.36 lbs
22841 g / 224.1 N
|
137.05 kg / 302.13 lbs
~0 Gs
|
| 3 mm |
147.69 kg / 325.60 lbs
5 472 Gs
|
22.15 kg / 48.84 lbs
22153 g / 217.3 N
|
132.92 kg / 293.04 lbs
~0 Gs
|
| 5 mm |
138.36 kg / 305.04 lbs
5 297 Gs
|
20.75 kg / 45.76 lbs
20754 g / 203.6 N
|
124.53 kg / 274.53 lbs
~0 Gs
|
| 10 mm |
115.08 kg / 253.71 lbs
4 830 Gs
|
17.26 kg / 38.06 lbs
17262 g / 169.3 N
|
103.57 kg / 228.34 lbs
~0 Gs
|
| 20 mm |
74.49 kg / 164.22 lbs
3 886 Gs
|
11.17 kg / 24.63 lbs
11174 g / 109.6 N
|
67.04 kg / 147.80 lbs
~0 Gs
|
| 50 mm |
17.20 kg / 37.91 lbs
1 867 Gs
|
2.58 kg / 5.69 lbs
2580 g / 25.3 N
|
15.48 kg / 34.12 lbs
~0 Gs
|
| 60 mm |
10.70 kg / 23.59 lbs
1 473 Gs
|
1.60 kg / 3.54 lbs
1605 g / 15.7 N
|
9.63 kg / 21.23 lbs
~0 Gs
|
| 70 mm |
6.78 kg / 14.94 lbs
1 172 Gs
|
1.02 kg / 2.24 lbs
1017 g / 10.0 N
|
6.10 kg / 13.45 lbs
~0 Gs
|
| 80 mm |
4.38 kg / 9.65 lbs
942 Gs
|
0.66 kg / 1.45 lbs
657 g / 6.4 N
|
3.94 kg / 8.69 lbs
~0 Gs
|
| 90 mm |
2.89 kg / 6.36 lbs
765 Gs
|
0.43 kg / 0.95 lbs
433 g / 4.2 N
|
2.60 kg / 5.72 lbs
~0 Gs
|
| 100 mm |
1.94 kg / 4.27 lbs
627 Gs
|
0.29 kg / 0.64 lbs
291 g / 2.9 N
|
1.74 kg / 3.84 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 80x40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 16.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 80x40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.11 km/h
(5.03 m/s)
|
4.56 J | |
| 30 mm |
25.99 km/h
(7.22 m/s)
|
9.38 J | |
| 50 mm |
32.48 km/h
(9.02 m/s)
|
14.65 J | |
| 100 mm |
45.61 km/h
(12.67 m/s)
|
28.89 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 80x40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 80x40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 94 833 Mx | 948.3 µWb |
| Współczynnik Pc | 0.33 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 80x40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 73.57 kg | Standard |
| Woda (dno rzeki) |
84.24 kg
(+10.67 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.33
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o przekroju nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda stal nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
BHP przy magnesach
Interferencja medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Smartfony i tablety
Silne pole magnetyczne zakłóca działanie kompasów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Łamliwość magnesów
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.
Zasady obsługi
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Przegrzanie magnesu
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa przyciągające się elementy.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Niklowa powłoka a alergia
Część populacji ma alergię kontaktową na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może powodować wysypkę. Wskazane jest noszenie rękawic bezlateksowych.
