MPL 5x5x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020173
GTIN/EAN: 5906301811794
Długość
5 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.77 kg / 7.57 N
Indukcja magnetyczna
360.52 mT / 3605 Gs
Powłoka
[NiCuNi] nikiel
0.308 ZŁ z VAT / szt. + cena za transport
0.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie pisz korzystając z
formularz kontaktowy
na stronie kontaktowej.
Właściwości oraz formę elementów magnetycznych testujesz w naszym
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MPL 5x5x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 5x5x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020173 |
| GTIN/EAN | 5906301811794 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 5 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.77 kg / 7.57 N |
| Indukcja magnetyczna ~ ? | 360.52 mT / 3605 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe wartości stanowią wynik analizy fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MPL 5x5x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3601 Gs
360.1 mT
|
0.77 kg / 770.0 g
7.6 N
|
słaby uchwyt |
| 1 mm |
2436 Gs
243.6 mT
|
0.35 kg / 352.2 g
3.5 N
|
słaby uchwyt |
| 2 mm |
1464 Gs
146.4 mT
|
0.13 kg / 127.3 g
1.2 N
|
słaby uchwyt |
| 3 mm |
872 Gs
87.2 mT
|
0.05 kg / 45.1 g
0.4 N
|
słaby uchwyt |
| 5 mm |
347 Gs
34.7 mT
|
0.01 kg / 7.2 g
0.1 N
|
słaby uchwyt |
| 10 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 15 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 5x5x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 154.0 g
1.5 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 70.0 g
0.7 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 5x5x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.23 kg / 231.0 g
2.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 154.0 g
1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 77.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.39 kg / 385.0 g
3.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 5x5x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 77.0 g
0.8 N
|
| 1 mm |
|
0.19 kg / 192.5 g
1.9 N
|
| 2 mm |
|
0.39 kg / 385.0 g
3.8 N
|
| 5 mm |
|
0.77 kg / 770.0 g
7.6 N
|
| 10 mm |
|
0.77 kg / 770.0 g
7.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 5x5x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.77 kg / 770.0 g
7.6 N
|
OK |
| 40 °C | -2.2% |
0.75 kg / 753.1 g
7.4 N
|
OK |
| 60 °C | -4.4% |
0.74 kg / 736.1 g
7.2 N
|
|
| 80 °C | -6.6% |
0.72 kg / 719.2 g
7.1 N
|
|
| 100 °C | -28.8% |
0.55 kg / 548.2 g
5.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 5x5x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.00 kg / 1999 g
19.6 N
5 058 Gs
|
N/A |
| 1 mm |
1.42 kg / 1420 g
13.9 N
6 070 Gs
|
1.28 kg / 1278 g
12.5 N
~0 Gs
|
| 2 mm |
0.91 kg / 914 g
9.0 N
4 871 Gs
|
0.82 kg / 823 g
8.1 N
~0 Gs
|
| 3 mm |
0.56 kg / 557 g
5.5 N
3 801 Gs
|
0.50 kg / 501 g
4.9 N
~0 Gs
|
| 5 mm |
0.20 kg / 196 g
1.9 N
2 254 Gs
|
0.18 kg / 176 g
1.7 N
~0 Gs
|
| 10 mm |
0.02 kg / 19 g
0.2 N
695 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
136 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
11 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 5x5x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 5x5x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
45.41 km/h
(12.61 m/s)
|
0.03 J | |
| 30 mm |
78.63 km/h
(21.84 m/s)
|
0.09 J | |
| 50 mm |
101.51 km/h
(28.20 m/s)
|
0.15 J | |
| 100 mm |
143.56 km/h
(39.88 m/s)
|
0.30 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 5x5x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 5x5x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 940 Mx | 9.4 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 5x5x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.77 kg | Standard |
| Woda (dno rzeki) |
0.88 kg
(+0.11 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi tylko ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- z płaszczyzną oczyszczoną i gładką
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Nie przegrzewaj magnesów
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Zagrożenie dla nawigacji
Silne pole magnetyczne destabilizuje działanie magnetometrów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Uwaga: zadławienie
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Uwaga medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Nadwrażliwość na metale
Część populacji posiada nadwrażliwość na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Wskazane jest stosowanie rękawiczek ochronnych.
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Ryzyko złamań
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Potężne pole
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
