MPL 5x5x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020173
GTIN/EAN: 5906301811794
Długość
5 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.77 kg / 7.57 N
Indukcja magnetyczna
360.52 mT / 3605 Gs
Powłoka
[NiCuNi] nikiel
0.308 ZŁ z VAT / szt. + cena za transport
0.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie napisz poprzez
formularz
na stronie kontaktowej.
Parametry oraz budowę magnesu neodymowego skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja - MPL 5x5x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 5x5x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020173 |
| GTIN/EAN | 5906301811794 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 5 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.77 kg / 7.57 N |
| Indukcja magnetyczna ~ ? | 360.52 mT / 3605 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Poniższe informacje są rezultat kalkulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 5x5x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3601 Gs
360.1 mT
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
niskie ryzyko |
| 1 mm |
2436 Gs
243.6 mT
|
0.35 kg / 0.78 lbs
352.2 g / 3.5 N
|
niskie ryzyko |
| 2 mm |
1464 Gs
146.4 mT
|
0.13 kg / 0.28 lbs
127.3 g / 1.2 N
|
niskie ryzyko |
| 3 mm |
872 Gs
87.2 mT
|
0.05 kg / 0.10 lbs
45.1 g / 0.4 N
|
niskie ryzyko |
| 5 mm |
347 Gs
34.7 mT
|
0.01 kg / 0.02 lbs
7.2 g / 0.1 N
|
niskie ryzyko |
| 10 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 5x5x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 5x5x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 5x5x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 lbs
77.0 g / 0.8 N
|
| 1 mm |
|
0.19 kg / 0.42 lbs
192.5 g / 1.9 N
|
| 2 mm |
|
0.39 kg / 0.85 lbs
385.0 g / 3.8 N
|
| 3 mm |
|
0.58 kg / 1.27 lbs
577.5 g / 5.7 N
|
| 5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 10 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 11 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 12 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 5x5x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
OK |
| 40 °C | -2.2% |
0.75 kg / 1.66 lbs
753.1 g / 7.4 N
|
OK |
| 60 °C | -4.4% |
0.74 kg / 1.62 lbs
736.1 g / 7.2 N
|
|
| 80 °C | -6.6% |
0.72 kg / 1.59 lbs
719.2 g / 7.1 N
|
|
| 100 °C | -28.8% |
0.55 kg / 1.21 lbs
548.2 g / 5.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 5x5x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.00 kg / 4.41 lbs
5 058 Gs
|
0.30 kg / 0.66 lbs
300 g / 2.9 N
|
N/A |
| 1 mm |
1.42 kg / 3.13 lbs
6 070 Gs
|
0.21 kg / 0.47 lbs
213 g / 2.1 N
|
1.28 kg / 2.82 lbs
~0 Gs
|
| 2 mm |
0.91 kg / 2.02 lbs
4 871 Gs
|
0.14 kg / 0.30 lbs
137 g / 1.3 N
|
0.82 kg / 1.81 lbs
~0 Gs
|
| 3 mm |
0.56 kg / 1.23 lbs
3 801 Gs
|
0.08 kg / 0.18 lbs
83 g / 0.8 N
|
0.50 kg / 1.10 lbs
~0 Gs
|
| 5 mm |
0.20 kg / 0.43 lbs
2 254 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 lbs
695 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
136 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 5x5x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 5x5x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
45.41 km/h
(12.61 m/s)
|
0.03 J | |
| 30 mm |
78.63 km/h
(21.84 m/s)
|
0.09 J | |
| 50 mm |
101.51 km/h
(28.20 m/s)
|
0.15 J | |
| 100 mm |
143.56 km/h
(39.88 m/s)
|
0.30 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 5x5x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 5x5x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 940 Mx | 9.4 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 5x5x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.77 kg | Standard |
| Woda (dno rzeki) |
0.88 kg
(+0.11 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Wady
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, która służy jako zwora magnetyczna
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Samozapłon
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Kruchy spiek
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Nie lekceważ mocy
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Bezpieczny dystans
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
