MPL 50x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020166
GTIN/EAN: 5906301811725
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
150 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.18 kg / 413.81 N
Indukcja magnetyczna
478.99 mT / 4790 Gs
Powłoka
[NiCuNi] nikiel
47.32 ZŁ z VAT / szt. + cena za transport
38.47 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość przez
nasz formularz online
na stronie kontakt.
Siłę i kształt magnesów wyliczysz u nas w
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MPL 50x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020166 |
| GTIN/EAN | 5906301811725 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 150 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.18 kg / 413.81 N |
| Indukcja magnetyczna ~ ? | 478.99 mT / 4790 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe wartości są bezpośredni efekt symulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 50x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4789 Gs
478.9 mT
|
42.18 kg / 42180.0 g
413.8 N
|
miażdżący |
| 1 mm |
4452 Gs
445.2 mT
|
36.46 kg / 36461.5 g
357.7 N
|
miażdżący |
| 2 mm |
4114 Gs
411.4 mT
|
31.13 kg / 31126.5 g
305.4 N
|
miażdżący |
| 3 mm |
3784 Gs
378.4 mT
|
26.34 kg / 26336.3 g
258.4 N
|
miażdżący |
| 5 mm |
3173 Gs
317.3 mT
|
18.52 kg / 18523.4 g
181.7 N
|
miażdżący |
| 10 mm |
2022 Gs
202.2 mT
|
7.52 kg / 7522.9 g
73.8 N
|
uwaga |
| 15 mm |
1324 Gs
132.4 mT
|
3.22 kg / 3222.6 g
31.6 N
|
uwaga |
| 20 mm |
899 Gs
89.9 mT
|
1.49 kg / 1487.5 g
14.6 N
|
słaby uchwyt |
| 30 mm |
458 Gs
45.8 mT
|
0.39 kg / 385.8 g
3.8 N
|
słaby uchwyt |
| 50 mm |
159 Gs
15.9 mT
|
0.05 kg / 46.4 g
0.5 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 50x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.44 kg / 8436.0 g
82.8 N
|
| 1 mm | Stal (~0.2) |
7.29 kg / 7292.0 g
71.5 N
|
| 2 mm | Stal (~0.2) |
6.23 kg / 6226.0 g
61.1 N
|
| 3 mm | Stal (~0.2) |
5.27 kg / 5268.0 g
51.7 N
|
| 5 mm | Stal (~0.2) |
3.70 kg / 3704.0 g
36.3 N
|
| 10 mm | Stal (~0.2) |
1.50 kg / 1504.0 g
14.8 N
|
| 15 mm | Stal (~0.2) |
0.64 kg / 644.0 g
6.3 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 298.0 g
2.9 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 78.0 g
0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 50x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.65 kg / 12654.0 g
124.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.44 kg / 8436.0 g
82.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.22 kg / 4218.0 g
41.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.09 kg / 21090.0 g
206.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 50x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.11 kg / 2109.0 g
20.7 N
|
| 1 mm |
|
5.27 kg / 5272.5 g
51.7 N
|
| 2 mm |
|
10.55 kg / 10545.0 g
103.4 N
|
| 5 mm |
|
26.36 kg / 26362.5 g
258.6 N
|
| 10 mm |
|
42.18 kg / 42180.0 g
413.8 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 50x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.18 kg / 42180.0 g
413.8 N
|
OK |
| 40 °C | -2.2% |
41.25 kg / 41252.0 g
404.7 N
|
OK |
| 60 °C | -4.4% |
40.32 kg / 40324.1 g
395.6 N
|
OK |
| 80 °C | -6.6% |
39.40 kg / 39396.1 g
386.5 N
|
|
| 100 °C | -28.8% |
30.03 kg / 30032.2 g
294.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 50x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
141.37 kg / 141367 g
1386.8 N
5 687 Gs
|
N/A |
| 1 mm |
131.73 kg / 131727 g
1292.2 N
9 245 Gs
|
118.55 kg / 118555 g
1163.0 N
~0 Gs
|
| 2 mm |
122.20 kg / 122202 g
1198.8 N
8 904 Gs
|
109.98 kg / 109981 g
1078.9 N
~0 Gs
|
| 3 mm |
113.05 kg / 113050 g
1109.0 N
8 564 Gs
|
101.74 kg / 101745 g
998.1 N
~0 Gs
|
| 5 mm |
96.05 kg / 96052 g
942.3 N
7 894 Gs
|
86.45 kg / 86447 g
848.0 N
~0 Gs
|
| 10 mm |
62.08 kg / 62082 g
609.0 N
6 347 Gs
|
55.87 kg / 55873 g
548.1 N
~0 Gs
|
| 20 mm |
25.21 kg / 25213 g
247.3 N
4 045 Gs
|
22.69 kg / 22692 g
222.6 N
~0 Gs
|
| 50 mm |
2.46 kg / 2464 g
24.2 N
1 264 Gs
|
2.22 kg / 2218 g
21.8 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 50x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 50x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.70 km/h
(5.20 m/s)
|
2.02 J | |
| 30 mm |
29.46 km/h
(8.18 m/s)
|
5.02 J | |
| 50 mm |
37.84 km/h
(10.51 m/s)
|
8.29 J | |
| 100 mm |
53.48 km/h
(14.86 m/s)
|
16.55 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 50x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 46 654 Mx | 466.5 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 50x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.18 kg | Standard |
| Woda (dno rzeki) |
48.30 kg
(+6.12 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – za chuda stal nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Elektronika precyzyjna
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Pył jest łatwopalny
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
To nie jest zabawka
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Potężne pole
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
