MPL 50x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020166
GTIN/EAN: 5906301811725
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
150 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.18 kg / 413.81 N
Indukcja magnetyczna
478.99 mT / 4790 Gs
Powłoka
[NiCuNi] nikiel
47.32 ZŁ z VAT / szt. + cena za transport
38.47 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo skontaktuj się korzystając z
formularz zgłoszeniowy
na naszej stronie.
Masę oraz budowę magnesów neodymowych zobaczysz w naszym
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020166 |
| GTIN/EAN | 5906301811725 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 150 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.18 kg / 413.81 N |
| Indukcja magnetyczna ~ ? | 478.99 mT / 4790 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 50x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4789 Gs
478.9 mT
|
42.18 kg / 42180.0 g
413.8 N
|
niebezpieczny! |
| 1 mm |
4452 Gs
445.2 mT
|
36.46 kg / 36461.5 g
357.7 N
|
niebezpieczny! |
| 2 mm |
4114 Gs
411.4 mT
|
31.13 kg / 31126.5 g
305.4 N
|
niebezpieczny! |
| 3 mm |
3784 Gs
378.4 mT
|
26.34 kg / 26336.3 g
258.4 N
|
niebezpieczny! |
| 5 mm |
3173 Gs
317.3 mT
|
18.52 kg / 18523.4 g
181.7 N
|
niebezpieczny! |
| 10 mm |
2022 Gs
202.2 mT
|
7.52 kg / 7522.9 g
73.8 N
|
uwaga |
| 15 mm |
1324 Gs
132.4 mT
|
3.22 kg / 3222.6 g
31.6 N
|
uwaga |
| 20 mm |
899 Gs
89.9 mT
|
1.49 kg / 1487.5 g
14.6 N
|
słaby uchwyt |
| 30 mm |
458 Gs
45.8 mT
|
0.39 kg / 385.8 g
3.8 N
|
słaby uchwyt |
| 50 mm |
159 Gs
15.9 mT
|
0.05 kg / 46.4 g
0.5 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 50x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.44 kg / 8436.0 g
82.8 N
|
| 1 mm | Stal (~0.2) |
7.29 kg / 7292.0 g
71.5 N
|
| 2 mm | Stal (~0.2) |
6.23 kg / 6226.0 g
61.1 N
|
| 3 mm | Stal (~0.2) |
5.27 kg / 5268.0 g
51.7 N
|
| 5 mm | Stal (~0.2) |
3.70 kg / 3704.0 g
36.3 N
|
| 10 mm | Stal (~0.2) |
1.50 kg / 1504.0 g
14.8 N
|
| 15 mm | Stal (~0.2) |
0.64 kg / 644.0 g
6.3 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 298.0 g
2.9 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 78.0 g
0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 50x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.65 kg / 12654.0 g
124.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.44 kg / 8436.0 g
82.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.22 kg / 4218.0 g
41.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.09 kg / 21090.0 g
206.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 50x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.11 kg / 2109.0 g
20.7 N
|
| 1 mm |
|
5.27 kg / 5272.5 g
51.7 N
|
| 2 mm |
|
10.55 kg / 10545.0 g
103.4 N
|
| 5 mm |
|
26.36 kg / 26362.5 g
258.6 N
|
| 10 mm |
|
42.18 kg / 42180.0 g
413.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 50x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.18 kg / 42180.0 g
413.8 N
|
OK |
| 40 °C | -2.2% |
41.25 kg / 41252.0 g
404.7 N
|
OK |
| 60 °C | -4.4% |
40.32 kg / 40324.1 g
395.6 N
|
OK |
| 80 °C | -6.6% |
39.40 kg / 39396.1 g
386.5 N
|
|
| 100 °C | -28.8% |
30.03 kg / 30032.2 g
294.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 50x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
141.37 kg / 141367 g
1386.8 N
5 687 Gs
|
N/A |
| 1 mm |
131.73 kg / 131727 g
1292.2 N
9 245 Gs
|
118.55 kg / 118555 g
1163.0 N
~0 Gs
|
| 2 mm |
122.20 kg / 122202 g
1198.8 N
8 904 Gs
|
109.98 kg / 109981 g
1078.9 N
~0 Gs
|
| 3 mm |
113.05 kg / 113050 g
1109.0 N
8 564 Gs
|
101.74 kg / 101745 g
998.1 N
~0 Gs
|
| 5 mm |
96.05 kg / 96052 g
942.3 N
7 894 Gs
|
86.45 kg / 86447 g
848.0 N
~0 Gs
|
| 10 mm |
62.08 kg / 62082 g
609.0 N
6 347 Gs
|
55.87 kg / 55873 g
548.1 N
~0 Gs
|
| 20 mm |
25.21 kg / 25213 g
247.3 N
4 045 Gs
|
22.69 kg / 22692 g
222.6 N
~0 Gs
|
| 50 mm |
2.46 kg / 2464 g
24.2 N
1 264 Gs
|
2.22 kg / 2218 g
21.8 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 50x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 9.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 50x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.70 km/h
(5.20 m/s)
|
2.02 J | |
| 30 mm |
29.46 km/h
(8.18 m/s)
|
5.02 J | |
| 50 mm |
37.84 km/h
(10.51 m/s)
|
8.29 J | |
| 100 mm |
53.48 km/h
(14.86 m/s)
|
16.55 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 50x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 46 654 Mx | 466.5 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 50x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.18 kg | Standard |
| Woda (dno rzeki) |
48.30 kg
(+6.12 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Dystans – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zagrożenie dla najmłodszych
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Ochrona urządzeń
Potężne oddziaływanie może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Smartfony i tablety
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Ryzyko uczulenia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
