MPL 50x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020166
GTIN/EAN: 5906301811725
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
150 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.18 kg / 413.81 N
Indukcja magnetyczna
478.99 mT / 4790 Gs
Powłoka
[NiCuNi] nikiel
47.32 ZŁ z VAT / szt. + cena za transport
38.47 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie skontaktuj się przez
formularz zapytania
na stronie kontakt.
Parametry oraz formę magnesu neodymowego przetestujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 50x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020166 |
| GTIN/EAN | 5906301811725 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 150 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.18 kg / 413.81 N |
| Indukcja magnetyczna ~ ? | 478.99 mT / 4790 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 50x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4789 Gs
478.9 mT
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
krytyczny poziom |
| 1 mm |
4452 Gs
445.2 mT
|
36.46 kg / 80.38 lbs
36461.5 g / 357.7 N
|
krytyczny poziom |
| 2 mm |
4114 Gs
411.4 mT
|
31.13 kg / 68.62 lbs
31126.5 g / 305.4 N
|
krytyczny poziom |
| 3 mm |
3784 Gs
378.4 mT
|
26.34 kg / 58.06 lbs
26336.3 g / 258.4 N
|
krytyczny poziom |
| 5 mm |
3173 Gs
317.3 mT
|
18.52 kg / 40.84 lbs
18523.4 g / 181.7 N
|
krytyczny poziom |
| 10 mm |
2022 Gs
202.2 mT
|
7.52 kg / 16.59 lbs
7522.9 g / 73.8 N
|
średnie ryzyko |
| 15 mm |
1324 Gs
132.4 mT
|
3.22 kg / 7.10 lbs
3222.6 g / 31.6 N
|
średnie ryzyko |
| 20 mm |
899 Gs
89.9 mT
|
1.49 kg / 3.28 lbs
1487.5 g / 14.6 N
|
bezpieczny |
| 30 mm |
458 Gs
45.8 mT
|
0.39 kg / 0.85 lbs
385.8 g / 3.8 N
|
bezpieczny |
| 50 mm |
159 Gs
15.9 mT
|
0.05 kg / 0.10 lbs
46.4 g / 0.5 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 50x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.44 kg / 18.60 lbs
8436.0 g / 82.8 N
|
| 1 mm | Stal (~0.2) |
7.29 kg / 16.08 lbs
7292.0 g / 71.5 N
|
| 2 mm | Stal (~0.2) |
6.23 kg / 13.73 lbs
6226.0 g / 61.1 N
|
| 3 mm | Stal (~0.2) |
5.27 kg / 11.61 lbs
5268.0 g / 51.7 N
|
| 5 mm | Stal (~0.2) |
3.70 kg / 8.17 lbs
3704.0 g / 36.3 N
|
| 10 mm | Stal (~0.2) |
1.50 kg / 3.32 lbs
1504.0 g / 14.8 N
|
| 15 mm | Stal (~0.2) |
0.64 kg / 1.42 lbs
644.0 g / 6.3 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 50x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.65 kg / 27.90 lbs
12654.0 g / 124.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.44 kg / 18.60 lbs
8436.0 g / 82.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.22 kg / 9.30 lbs
4218.0 g / 41.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.09 kg / 46.50 lbs
21090.0 g / 206.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.11 kg / 4.65 lbs
2109.0 g / 20.7 N
|
| 1 mm |
|
5.27 kg / 11.62 lbs
5272.5 g / 51.7 N
|
| 2 mm |
|
10.55 kg / 23.25 lbs
10545.0 g / 103.4 N
|
| 3 mm |
|
15.82 kg / 34.87 lbs
15817.5 g / 155.2 N
|
| 5 mm |
|
26.36 kg / 58.12 lbs
26362.5 g / 258.6 N
|
| 10 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
| 11 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
| 12 mm |
|
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 50x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.18 kg / 92.99 lbs
42180.0 g / 413.8 N
|
OK |
| 40 °C | -2.2% |
41.25 kg / 90.95 lbs
41252.0 g / 404.7 N
|
OK |
| 60 °C | -4.4% |
40.32 kg / 88.90 lbs
40324.1 g / 395.6 N
|
OK |
| 80 °C | -6.6% |
39.40 kg / 86.85 lbs
39396.1 g / 386.5 N
|
|
| 100 °C | -28.8% |
30.03 kg / 66.21 lbs
30032.2 g / 294.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 50x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
141.37 kg / 311.66 lbs
5 687 Gs
|
21.21 kg / 46.75 lbs
21205 g / 208.0 N
|
N/A |
| 1 mm |
131.73 kg / 290.41 lbs
9 245 Gs
|
19.76 kg / 43.56 lbs
19759 g / 193.8 N
|
118.55 kg / 261.37 lbs
~0 Gs
|
| 2 mm |
122.20 kg / 269.41 lbs
8 904 Gs
|
18.33 kg / 40.41 lbs
18330 g / 179.8 N
|
109.98 kg / 242.47 lbs
~0 Gs
|
| 3 mm |
113.05 kg / 249.23 lbs
8 564 Gs
|
16.96 kg / 37.38 lbs
16957 g / 166.4 N
|
101.74 kg / 224.31 lbs
~0 Gs
|
| 5 mm |
96.05 kg / 211.76 lbs
7 894 Gs
|
14.41 kg / 31.76 lbs
14408 g / 141.3 N
|
86.45 kg / 190.58 lbs
~0 Gs
|
| 10 mm |
62.08 kg / 136.87 lbs
6 347 Gs
|
9.31 kg / 20.53 lbs
9312 g / 91.4 N
|
55.87 kg / 123.18 lbs
~0 Gs
|
| 20 mm |
25.21 kg / 55.59 lbs
4 045 Gs
|
3.78 kg / 8.34 lbs
3782 g / 37.1 N
|
22.69 kg / 50.03 lbs
~0 Gs
|
| 50 mm |
2.46 kg / 5.43 lbs
1 264 Gs
|
0.37 kg / 0.81 lbs
370 g / 3.6 N
|
2.22 kg / 4.89 lbs
~0 Gs
|
| 60 mm |
1.29 kg / 2.85 lbs
916 Gs
|
0.19 kg / 0.43 lbs
194 g / 1.9 N
|
1.16 kg / 2.57 lbs
~0 Gs
|
| 70 mm |
0.71 kg / 1.58 lbs
681 Gs
|
0.11 kg / 0.24 lbs
107 g / 1.1 N
|
0.64 kg / 1.42 lbs
~0 Gs
|
| 80 mm |
0.41 kg / 0.91 lbs
518 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
| 90 mm |
0.25 kg / 0.55 lbs
402 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 100 mm |
0.16 kg / 0.34 lbs
318 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 50x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 50x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.70 km/h
(5.20 m/s)
|
2.02 J | |
| 30 mm |
29.46 km/h
(8.18 m/s)
|
5.02 J | |
| 50 mm |
37.84 km/h
(10.51 m/s)
|
8.29 J | |
| 100 mm |
53.48 km/h
(14.86 m/s)
|
16.55 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 50x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 46 654 Mx | 466.5 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 50x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.18 kg | Standard |
| Woda (dno rzeki) |
48.30 kg
(+6.12 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część strumienia ucieka w powietrzu.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Siła neodymu
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Rozprysk materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Smartfony i tablety
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Zagrożenie zapłonem
Pył generowany podczas obróbki magnesów jest łatwopalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Maksymalna temperatura
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Zagrożenie dla najmłodszych
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj z dala od dzieci i zwierząt.
Uczulenie na powłokę
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
