MPL 45x25x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020164
GTIN/EAN: 5906301811701
Długość
45 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
84.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
28.48 kg / 279.40 N
Indukcja magnetyczna
306.29 mT / 3063 Gs
Powłoka
[NiCuNi] nikiel
35.01 ZŁ z VAT / szt. + cena za transport
28.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo napisz przez
formularz zapytania
na stronie kontakt.
Moc oraz wygląd magnesu skontrolujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja - MPL 45x25x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 45x25x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020164 |
| GTIN/EAN | 5906301811701 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 45 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 84.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 28.48 kg / 279.40 N |
| Indukcja magnetyczna ~ ? | 306.29 mT / 3063 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 45x25x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3062 Gs
306.2 mT
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
niebezpieczny! |
| 1 mm |
2918 Gs
291.8 mT
|
25.86 kg / 57.00 lbs
25856.7 g / 253.7 N
|
niebezpieczny! |
| 2 mm |
2760 Gs
276.0 mT
|
23.13 kg / 51.00 lbs
23133.2 g / 226.9 N
|
niebezpieczny! |
| 3 mm |
2595 Gs
259.5 mT
|
20.45 kg / 45.08 lbs
20449.5 g / 200.6 N
|
niebezpieczny! |
| 5 mm |
2261 Gs
226.1 mT
|
15.53 kg / 34.23 lbs
15525.8 g / 152.3 N
|
niebezpieczny! |
| 10 mm |
1529 Gs
152.9 mT
|
7.10 kg / 15.64 lbs
7096.1 g / 69.6 N
|
uwaga |
| 15 mm |
1018 Gs
101.8 mT
|
3.15 kg / 6.94 lbs
3147.4 g / 30.9 N
|
uwaga |
| 20 mm |
688 Gs
68.8 mT
|
1.44 kg / 3.17 lbs
1439.4 g / 14.1 N
|
niskie ryzyko |
| 30 mm |
340 Gs
34.0 mT
|
0.35 kg / 0.77 lbs
350.8 g / 3.4 N
|
niskie ryzyko |
| 50 mm |
111 Gs
11.1 mT
|
0.04 kg / 0.08 lbs
37.1 g / 0.4 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 45x25x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.70 kg / 12.56 lbs
5696.0 g / 55.9 N
|
| 1 mm | Stal (~0.2) |
5.17 kg / 11.40 lbs
5172.0 g / 50.7 N
|
| 2 mm | Stal (~0.2) |
4.63 kg / 10.20 lbs
4626.0 g / 45.4 N
|
| 3 mm | Stal (~0.2) |
4.09 kg / 9.02 lbs
4090.0 g / 40.1 N
|
| 5 mm | Stal (~0.2) |
3.11 kg / 6.85 lbs
3106.0 g / 30.5 N
|
| 10 mm | Stal (~0.2) |
1.42 kg / 3.13 lbs
1420.0 g / 13.9 N
|
| 15 mm | Stal (~0.2) |
0.63 kg / 1.39 lbs
630.0 g / 6.2 N
|
| 20 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 45x25x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.54 kg / 18.84 lbs
8544.0 g / 83.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.70 kg / 12.56 lbs
5696.0 g / 55.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.85 kg / 6.28 lbs
2848.0 g / 27.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
14.24 kg / 31.39 lbs
14240.0 g / 139.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 45x25x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.42 kg / 3.14 lbs
1424.0 g / 14.0 N
|
| 1 mm |
|
3.56 kg / 7.85 lbs
3560.0 g / 34.9 N
|
| 2 mm |
|
7.12 kg / 15.70 lbs
7120.0 g / 69.8 N
|
| 3 mm |
|
10.68 kg / 23.55 lbs
10680.0 g / 104.8 N
|
| 5 mm |
|
17.80 kg / 39.24 lbs
17800.0 g / 174.6 N
|
| 10 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
| 11 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
| 12 mm |
|
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 45x25x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
28.48 kg / 62.79 lbs
28480.0 g / 279.4 N
|
OK |
| 40 °C | -2.2% |
27.85 kg / 61.41 lbs
27853.4 g / 273.2 N
|
OK |
| 60 °C | -4.4% |
27.23 kg / 60.02 lbs
27226.9 g / 267.1 N
|
|
| 80 °C | -6.6% |
26.60 kg / 58.64 lbs
26600.3 g / 260.9 N
|
|
| 100 °C | -28.8% |
20.28 kg / 44.70 lbs
20277.8 g / 198.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 45x25x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
65.04 kg / 143.40 lbs
4 590 Gs
|
9.76 kg / 21.51 lbs
9757 g / 95.7 N
|
N/A |
| 1 mm |
62.12 kg / 136.95 lbs
5 985 Gs
|
9.32 kg / 20.54 lbs
9318 g / 91.4 N
|
55.91 kg / 123.25 lbs
~0 Gs
|
| 2 mm |
59.05 kg / 130.19 lbs
5 836 Gs
|
8.86 kg / 19.53 lbs
8858 g / 86.9 N
|
53.15 kg / 117.17 lbs
~0 Gs
|
| 3 mm |
55.95 kg / 123.34 lbs
5 680 Gs
|
8.39 kg / 18.50 lbs
8392 g / 82.3 N
|
50.35 kg / 111.01 lbs
~0 Gs
|
| 5 mm |
49.74 kg / 109.66 lbs
5 356 Gs
|
7.46 kg / 16.45 lbs
7461 g / 73.2 N
|
44.77 kg / 98.70 lbs
~0 Gs
|
| 10 mm |
35.46 kg / 78.17 lbs
4 522 Gs
|
5.32 kg / 11.73 lbs
5319 g / 52.2 N
|
31.91 kg / 70.36 lbs
~0 Gs
|
| 20 mm |
16.21 kg / 35.73 lbs
3 057 Gs
|
2.43 kg / 5.36 lbs
2431 g / 23.8 N
|
14.59 kg / 32.16 lbs
~0 Gs
|
| 50 mm |
1.58 kg / 3.48 lbs
955 Gs
|
0.24 kg / 0.52 lbs
237 g / 2.3 N
|
1.42 kg / 3.14 lbs
~0 Gs
|
| 60 mm |
0.80 kg / 1.77 lbs
680 Gs
|
0.12 kg / 0.26 lbs
120 g / 1.2 N
|
0.72 kg / 1.59 lbs
~0 Gs
|
| 70 mm |
0.43 kg / 0.94 lbs
497 Gs
|
0.06 kg / 0.14 lbs
64 g / 0.6 N
|
0.38 kg / 0.85 lbs
~0 Gs
|
| 80 mm |
0.24 kg / 0.53 lbs
372 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.47 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.31 lbs
284 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 100 mm |
0.08 kg / 0.19 lbs
221 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 45x25x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 45x25x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.22 km/h
(5.89 m/s)
|
1.47 J | |
| 30 mm |
32.34 km/h
(8.98 m/s)
|
3.40 J | |
| 50 mm |
41.46 km/h
(11.52 m/s)
|
5.60 J | |
| 100 mm |
58.59 km/h
(16.28 m/s)
|
11.18 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 45x25x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 45x25x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 35 829 Mx | 358.3 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 45x25x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 28.48 kg | Standard |
| Woda (dno rzeki) |
32.61 kg
(+4.13 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Bezpieczna praca
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Implanty kardiologiczne
Osoby z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Kruchość materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Obróbka mechaniczna
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Niklowa powłoka a alergia
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Produkt nie dla dzieci
Te produkty magnetyczne to nie zabawki. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Poważne obrażenia
Duże magnesy mogą połamać palce błyskawicznie. Nigdy umieszczaj dłoni między dwa silne magnesy.
Ryzyko rozmagnesowania
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
