MPL 45x25x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020164
GTIN/EAN: 5906301811701
Długość
45 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
84.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
28.48 kg / 279.40 N
Indukcja magnetyczna
306.29 mT / 3063 Gs
Powłoka
[NiCuNi] nikiel
35.01 ZŁ z VAT / szt. + cena za transport
28.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie pisz przez
formularz zapytania
przez naszą stronę.
Masę oraz budowę magnesów zobaczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane - MPL 45x25x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 45x25x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020164 |
| GTIN/EAN | 5906301811701 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 45 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 84.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 28.48 kg / 279.40 N |
| Indukcja magnetyczna ~ ? | 306.29 mT / 3063 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Przedstawione informacje są rezultat kalkulacji fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MPL 45x25x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3062 Gs
306.2 mT
|
28.48 kg / 28480.0 g
279.4 N
|
krytyczny poziom |
| 1 mm |
2918 Gs
291.8 mT
|
25.86 kg / 25856.7 g
253.7 N
|
krytyczny poziom |
| 2 mm |
2760 Gs
276.0 mT
|
23.13 kg / 23133.2 g
226.9 N
|
krytyczny poziom |
| 3 mm |
2595 Gs
259.5 mT
|
20.45 kg / 20449.5 g
200.6 N
|
krytyczny poziom |
| 5 mm |
2261 Gs
226.1 mT
|
15.53 kg / 15525.8 g
152.3 N
|
krytyczny poziom |
| 10 mm |
1529 Gs
152.9 mT
|
7.10 kg / 7096.1 g
69.6 N
|
uwaga |
| 15 mm |
1018 Gs
101.8 mT
|
3.15 kg / 3147.4 g
30.9 N
|
uwaga |
| 20 mm |
688 Gs
68.8 mT
|
1.44 kg / 1439.4 g
14.1 N
|
niskie ryzyko |
| 30 mm |
340 Gs
34.0 mT
|
0.35 kg / 350.8 g
3.4 N
|
niskie ryzyko |
| 50 mm |
111 Gs
11.1 mT
|
0.04 kg / 37.1 g
0.4 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 45x25x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.70 kg / 5696.0 g
55.9 N
|
| 1 mm | Stal (~0.2) |
5.17 kg / 5172.0 g
50.7 N
|
| 2 mm | Stal (~0.2) |
4.63 kg / 4626.0 g
45.4 N
|
| 3 mm | Stal (~0.2) |
4.09 kg / 4090.0 g
40.1 N
|
| 5 mm | Stal (~0.2) |
3.11 kg / 3106.0 g
30.5 N
|
| 10 mm | Stal (~0.2) |
1.42 kg / 1420.0 g
13.9 N
|
| 15 mm | Stal (~0.2) |
0.63 kg / 630.0 g
6.2 N
|
| 20 mm | Stal (~0.2) |
0.29 kg / 288.0 g
2.8 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 70.0 g
0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 45x25x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.54 kg / 8544.0 g
83.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.70 kg / 5696.0 g
55.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.85 kg / 2848.0 g
27.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
14.24 kg / 14240.0 g
139.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 45x25x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.42 kg / 1424.0 g
14.0 N
|
| 1 mm |
|
3.56 kg / 3560.0 g
34.9 N
|
| 2 mm |
|
7.12 kg / 7120.0 g
69.8 N
|
| 5 mm |
|
17.80 kg / 17800.0 g
174.6 N
|
| 10 mm |
|
28.48 kg / 28480.0 g
279.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 45x25x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
28.48 kg / 28480.0 g
279.4 N
|
OK |
| 40 °C | -2.2% |
27.85 kg / 27853.4 g
273.2 N
|
OK |
| 60 °C | -4.4% |
27.23 kg / 27226.9 g
267.1 N
|
|
| 80 °C | -6.6% |
26.60 kg / 26600.3 g
260.9 N
|
|
| 100 °C | -28.8% |
20.28 kg / 20277.8 g
198.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 45x25x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
65.04 kg / 65044 g
638.1 N
4 590 Gs
|
N/A |
| 1 mm |
62.12 kg / 62117 g
609.4 N
5 985 Gs
|
55.91 kg / 55906 g
548.4 N
~0 Gs
|
| 2 mm |
59.05 kg / 59053 g
579.3 N
5 836 Gs
|
53.15 kg / 53148 g
521.4 N
~0 Gs
|
| 3 mm |
55.95 kg / 55947 g
548.8 N
5 680 Gs
|
50.35 kg / 50352 g
494.0 N
~0 Gs
|
| 5 mm |
49.74 kg / 49743 g
488.0 N
5 356 Gs
|
44.77 kg / 44769 g
439.2 N
~0 Gs
|
| 10 mm |
35.46 kg / 35459 g
347.9 N
4 522 Gs
|
31.91 kg / 31913 g
313.1 N
~0 Gs
|
| 20 mm |
16.21 kg / 16206 g
159.0 N
3 057 Gs
|
14.59 kg / 14586 g
143.1 N
~0 Gs
|
| 50 mm |
1.58 kg / 1580 g
15.5 N
955 Gs
|
1.42 kg / 1422 g
14.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 45x25x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 45x25x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.22 km/h
(5.89 m/s)
|
1.47 J | |
| 30 mm |
32.34 km/h
(8.98 m/s)
|
3.40 J | |
| 50 mm |
41.46 km/h
(11.52 m/s)
|
5.60 J | |
| 100 mm |
58.59 km/h
(16.28 m/s)
|
11.18 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 45x25x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 45x25x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 35 829 Mx | 358.3 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 45x25x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 28.48 kg | Standard |
| Woda (dno rzeki) |
32.61 kg
(+4.13 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- o przekroju przynajmniej 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie jakiejkolwiek warstwy (farba, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Implanty medyczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Produkt nie dla dzieci
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem niepowołanych osób.
Ochrona dłoni
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Ryzyko pożaru
Pył powstający podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Potężne pole
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Niklowa powłoka a alergia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
