MPL 40x18x10 SH / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020157
GTIN/EAN: 5906301811633
Długość
40 mm [±0,1 mm]
Szerokość
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
↑ osiowy
Udźwig
23.81 kg / 233.58 N
Indukcja magnetyczna
366.66 mT / 3667 Gs
Powłoka
[NiCuNi] nikiel
36.29 ZŁ z VAT / szt. + cena za transport
29.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
formularz
na naszej stronie.
Moc i kształt magnesów neodymowych sprawdzisz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne - MPL 40x18x10 SH / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x18x10 SH / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020157 |
| GTIN/EAN | 5906301811633 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 23.81 kg / 233.58 N |
| Indukcja magnetyczna ~ ? | 366.66 mT / 3667 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Poniższe dane stanowią rezultat analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MPL 40x18x10 SH / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3666 Gs
366.6 mT
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
krytyczny poziom |
| 1 mm |
3399 Gs
339.9 mT
|
20.48 kg / 45.14 lbs
20476.1 g / 200.9 N
|
krytyczny poziom |
| 2 mm |
3120 Gs
312.0 mT
|
17.25 kg / 38.02 lbs
17245.9 g / 169.2 N
|
krytyczny poziom |
| 3 mm |
2841 Gs
284.1 mT
|
14.30 kg / 31.54 lbs
14304.1 g / 140.3 N
|
krytyczny poziom |
| 5 mm |
2321 Gs
232.1 mT
|
9.55 kg / 21.05 lbs
9547.8 g / 93.7 N
|
średnie ryzyko |
| 10 mm |
1370 Gs
137.0 mT
|
3.32 kg / 7.33 lbs
3324.4 g / 32.6 N
|
średnie ryzyko |
| 15 mm |
833 Gs
83.3 mT
|
1.23 kg / 2.71 lbs
1229.0 g / 12.1 N
|
bezpieczny |
| 20 mm |
530 Gs
53.0 mT
|
0.50 kg / 1.10 lbs
498.1 g / 4.9 N
|
bezpieczny |
| 30 mm |
244 Gs
24.4 mT
|
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
|
bezpieczny |
| 50 mm |
75 Gs
7.5 mT
|
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 40x18x10 SH / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| 1 mm | Stal (~0.2) |
4.10 kg / 9.03 lbs
4096.0 g / 40.2 N
|
| 2 mm | Stal (~0.2) |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 3 mm | Stal (~0.2) |
2.86 kg / 6.31 lbs
2860.0 g / 28.1 N
|
| 5 mm | Stal (~0.2) |
1.91 kg / 4.21 lbs
1910.0 g / 18.7 N
|
| 10 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
664.0 g / 6.5 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.54 lbs
246.0 g / 2.4 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 40x18x10 SH / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.14 kg / 15.75 lbs
7143.0 g / 70.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.38 kg / 5.25 lbs
2381.0 g / 23.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
11.91 kg / 26.25 lbs
11905.0 g / 116.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 40x18x10 SH / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.19 kg / 2.62 lbs
1190.5 g / 11.7 N
|
| 1 mm |
|
2.98 kg / 6.56 lbs
2976.3 g / 29.2 N
|
| 2 mm |
|
5.95 kg / 13.12 lbs
5952.5 g / 58.4 N
|
| 3 mm |
|
8.93 kg / 19.68 lbs
8928.7 g / 87.6 N
|
| 5 mm |
|
14.88 kg / 32.81 lbs
14881.3 g / 146.0 N
|
| 10 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 11 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 12 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 40x18x10 SH / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
OK |
| 40 °C | -2.2% |
23.29 kg / 51.34 lbs
23286.2 g / 228.4 N
|
OK |
| 60 °C | -4.4% |
22.76 kg / 50.18 lbs
22762.4 g / 223.3 N
|
|
| 80 °C | -6.6% |
22.24 kg / 49.03 lbs
22238.5 g / 218.2 N
|
|
| 100 °C | -28.8% |
16.95 kg / 37.37 lbs
16952.7 g / 166.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 40x18x10 SH / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.64 kg / 131.49 lbs
5 034 Gs
|
8.95 kg / 19.72 lbs
8947 g / 87.8 N
|
N/A |
| 1 mm |
55.50 kg / 122.35 lbs
7 072 Gs
|
8.32 kg / 18.35 lbs
8325 g / 81.7 N
|
49.95 kg / 110.12 lbs
~0 Gs
|
| 2 mm |
51.29 kg / 113.08 lbs
6 799 Gs
|
7.69 kg / 16.96 lbs
7694 g / 75.5 N
|
46.16 kg / 101.77 lbs
~0 Gs
|
| 3 mm |
47.18 kg / 104.01 lbs
6 520 Gs
|
7.08 kg / 15.60 lbs
7076 g / 69.4 N
|
42.46 kg / 93.61 lbs
~0 Gs
|
| 5 mm |
39.41 kg / 86.88 lbs
5 959 Gs
|
5.91 kg / 13.03 lbs
5912 g / 58.0 N
|
35.47 kg / 78.20 lbs
~0 Gs
|
| 10 mm |
23.92 kg / 52.73 lbs
4 643 Gs
|
3.59 kg / 7.91 lbs
3588 g / 35.2 N
|
21.53 kg / 47.46 lbs
~0 Gs
|
| 20 mm |
8.33 kg / 18.36 lbs
2 739 Gs
|
1.25 kg / 2.75 lbs
1249 g / 12.3 N
|
7.49 kg / 16.52 lbs
~0 Gs
|
| 50 mm |
0.55 kg / 1.22 lbs
705 Gs
|
0.08 kg / 0.18 lbs
83 g / 0.8 N
|
0.50 kg / 1.09 lbs
~0 Gs
|
| 60 mm |
0.26 kg / 0.58 lbs
487 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.52 lbs
~0 Gs
|
| 70 mm |
0.13 kg / 0.30 lbs
348 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.16 lbs
256 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
194 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
149 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 40x18x10 SH / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x18x10 SH / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
1.10 J | |
| 30 mm |
36.78 km/h
(10.22 m/s)
|
2.82 J | |
| 50 mm |
47.37 km/h
(13.16 m/s)
|
4.67 J | |
| 100 mm |
66.97 km/h
(18.60 m/s)
|
9.34 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x18x10 SH / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x18x10 SH / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 26 060 Mx | 260.6 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x18x10 SH / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 23.81 kg | Standard |
| Woda (dno rzeki) |
27.26 kg
(+3.45 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
UMP 75x25 [M10x3] GW F200 PLATINIUM Lina / N52 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (bez powłok)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Ryzyko połknięcia
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Uwaga medyczna
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Ryzyko uczulenia
Pewna grupa użytkowników ma nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może skutkować wysypkę. Rekomendujemy stosowanie rękawiczek ochronnych.
Samozapłon
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Świadome użytkowanie
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Urządzenia elektroniczne
Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Urazy ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Kruchość materiału
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
