MPL 40x18x10 SH / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020157
GTIN/EAN: 5906301811633
Długość
40 mm [±0,1 mm]
Szerokość
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
↑ osiowy
Udźwig
23.81 kg / 233.58 N
Indukcja magnetyczna
366.66 mT / 3667 Gs
Powłoka
[NiCuNi] nikiel
36.29 ZŁ z VAT / szt. + cena za transport
29.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie daj znać za pomocą
formularz kontaktowy
na naszej stronie.
Udźwig oraz formę magnesów neodymowych sprawdzisz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 40x18x10 SH / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x18x10 SH / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020157 |
| GTIN/EAN | 5906301811633 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 23.81 kg / 233.58 N |
| Indukcja magnetyczna ~ ? | 366.66 mT / 3667 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione informacje są bezpośredni efekt symulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 40x18x10 SH / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3666 Gs
366.6 mT
|
23.81 kg / 23810.0 g
233.6 N
|
miażdżący |
| 1 mm |
3399 Gs
339.9 mT
|
20.48 kg / 20476.1 g
200.9 N
|
miażdżący |
| 2 mm |
3120 Gs
312.0 mT
|
17.25 kg / 17245.9 g
169.2 N
|
miażdżący |
| 3 mm |
2841 Gs
284.1 mT
|
14.30 kg / 14304.1 g
140.3 N
|
miażdżący |
| 5 mm |
2321 Gs
232.1 mT
|
9.55 kg / 9547.8 g
93.7 N
|
średnie ryzyko |
| 10 mm |
1370 Gs
137.0 mT
|
3.32 kg / 3324.4 g
32.6 N
|
średnie ryzyko |
| 15 mm |
833 Gs
83.3 mT
|
1.23 kg / 1229.0 g
12.1 N
|
niskie ryzyko |
| 20 mm |
530 Gs
53.0 mT
|
0.50 kg / 498.1 g
4.9 N
|
niskie ryzyko |
| 30 mm |
244 Gs
24.4 mT
|
0.11 kg / 105.3 g
1.0 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.01 kg / 9.9 g
0.1 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 40x18x10 SH / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.76 kg / 4762.0 g
46.7 N
|
| 1 mm | Stal (~0.2) |
4.10 kg / 4096.0 g
40.2 N
|
| 2 mm | Stal (~0.2) |
3.45 kg / 3450.0 g
33.8 N
|
| 3 mm | Stal (~0.2) |
2.86 kg / 2860.0 g
28.1 N
|
| 5 mm | Stal (~0.2) |
1.91 kg / 1910.0 g
18.7 N
|
| 10 mm | Stal (~0.2) |
0.66 kg / 664.0 g
6.5 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 246.0 g
2.4 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 100.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 40x18x10 SH / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.14 kg / 7143.0 g
70.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.76 kg / 4762.0 g
46.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.38 kg / 2381.0 g
23.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
11.91 kg / 11905.0 g
116.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 40x18x10 SH / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.19 kg / 1190.5 g
11.7 N
|
| 1 mm |
|
2.98 kg / 2976.3 g
29.2 N
|
| 2 mm |
|
5.95 kg / 5952.5 g
58.4 N
|
| 5 mm |
|
14.88 kg / 14881.3 g
146.0 N
|
| 10 mm |
|
23.81 kg / 23810.0 g
233.6 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 40x18x10 SH / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.81 kg / 23810.0 g
233.6 N
|
OK |
| 40 °C | -2.2% |
23.29 kg / 23286.2 g
228.4 N
|
OK |
| 60 °C | -4.4% |
22.76 kg / 22762.4 g
223.3 N
|
|
| 80 °C | -6.6% |
22.24 kg / 22238.5 g
218.2 N
|
|
| 100 °C | -28.8% |
16.95 kg / 16952.7 g
166.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 40x18x10 SH / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
59.64 kg / 59645 g
585.1 N
5 034 Gs
|
N/A |
| 1 mm |
55.50 kg / 55499 g
544.4 N
7 072 Gs
|
49.95 kg / 49949 g
490.0 N
~0 Gs
|
| 2 mm |
51.29 kg / 51293 g
503.2 N
6 799 Gs
|
46.16 kg / 46164 g
452.9 N
~0 Gs
|
| 3 mm |
47.18 kg / 47176 g
462.8 N
6 520 Gs
|
42.46 kg / 42459 g
416.5 N
~0 Gs
|
| 5 mm |
39.41 kg / 39410 g
386.6 N
5 959 Gs
|
35.47 kg / 35469 g
348.0 N
~0 Gs
|
| 10 mm |
23.92 kg / 23918 g
234.6 N
4 643 Gs
|
21.53 kg / 21526 g
211.2 N
~0 Gs
|
| 20 mm |
8.33 kg / 8328 g
81.7 N
2 739 Gs
|
7.49 kg / 7495 g
73.5 N
~0 Gs
|
| 50 mm |
0.55 kg / 552 g
5.4 N
705 Gs
|
0.50 kg / 497 g
4.9 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 40x18x10 SH / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 40x18x10 SH / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
1.10 J | |
| 30 mm |
36.78 km/h
(10.22 m/s)
|
2.82 J | |
| 50 mm |
47.37 km/h
(13.16 m/s)
|
4.67 J | |
| 100 mm |
66.97 km/h
(18.60 m/s)
|
9.34 J |
Tabela 9: Odporność na korozję
MPL 40x18x10 SH / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 40x18x10 SH / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 26 060 Mx | 260.6 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x18x10 SH / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 23.81 kg | Standard |
| Woda (dno rzeki) |
27.26 kg
(+3.45 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (nikiel, Au, Ag) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- z wykorzystaniem blachy ze miękkiej stali, pełniącej rolę element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Ostrzeżenie dla sercowców
Osoby z stymulatorem serca muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać pracę implantu.
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Pole magnetyczne a elektronika
Potężne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
To nie jest zabawka
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Poważne obrażenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
