MPL 40x10x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020151
GTIN/EAN: 5906301811572
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
12 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.31 kg / 91.33 N
Indukcja magnetyczna
275.57 mT / 2756 Gs
Powłoka
[NiCuNi] nikiel
9.21 ZŁ z VAT / szt. + cena za transport
7.49 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie skontaktuj się za pomocą
nasz formularz online
na stronie kontaktowej.
Siłę i budowę magnesów neodymowych przetestujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MPL 40x10x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020151 |
| GTIN/EAN | 5906301811572 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 12 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.31 kg / 91.33 N |
| Indukcja magnetyczna ~ ? | 275.57 mT / 2756 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt symulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 40x10x4x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2755 Gs
275.5 mT
|
9.31 kg / 9310.0 g
91.3 N
|
uwaga |
| 1 mm |
2413 Gs
241.3 mT
|
7.14 kg / 7143.1 g
70.1 N
|
uwaga |
| 2 mm |
2044 Gs
204.4 mT
|
5.13 kg / 5128.9 g
50.3 N
|
uwaga |
| 3 mm |
1703 Gs
170.3 mT
|
3.56 kg / 3559.5 g
34.9 N
|
uwaga |
| 5 mm |
1173 Gs
117.3 mT
|
1.69 kg / 1688.2 g
16.6 N
|
niskie ryzyko |
| 10 mm |
522 Gs
52.2 mT
|
0.33 kg / 334.9 g
3.3 N
|
niskie ryzyko |
| 15 mm |
277 Gs
27.7 mT
|
0.09 kg / 94.2 g
0.9 N
|
niskie ryzyko |
| 20 mm |
163 Gs
16.3 mT
|
0.03 kg / 32.8 g
0.3 N
|
niskie ryzyko |
| 30 mm |
69 Gs
6.9 mT
|
0.01 kg / 5.8 g
0.1 N
|
niskie ryzyko |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.5 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 40x10x4x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.86 kg / 1862.0 g
18.3 N
|
| 1 mm | Stal (~0.2) |
1.43 kg / 1428.0 g
14.0 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 1026.0 g
10.1 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 712.0 g
7.0 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 338.0 g
3.3 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 40x10x4x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.79 kg / 2793.0 g
27.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.86 kg / 1862.0 g
18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 931.0 g
9.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.66 kg / 4655.0 g
45.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x10x4x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 931.0 g
9.1 N
|
| 1 mm |
|
2.33 kg / 2327.5 g
22.8 N
|
| 2 mm |
|
4.66 kg / 4655.0 g
45.7 N
|
| 5 mm |
|
9.31 kg / 9310.0 g
91.3 N
|
| 10 mm |
|
9.31 kg / 9310.0 g
91.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 40x10x4x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.31 kg / 9310.0 g
91.3 N
|
OK |
| 40 °C | -2.2% |
9.11 kg / 9105.2 g
89.3 N
|
OK |
| 60 °C | -4.4% |
8.90 kg / 8900.4 g
87.3 N
|
|
| 80 °C | -6.6% |
8.70 kg / 8695.5 g
85.3 N
|
|
| 100 °C | -28.8% |
6.63 kg / 6628.7 g
65.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 40x10x4x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
18.71 kg / 18711 g
183.6 N
4 164 Gs
|
N/A |
| 1 mm |
16.57 kg / 16572 g
162.6 N
5 185 Gs
|
14.91 kg / 14915 g
146.3 N
~0 Gs
|
| 2 mm |
14.36 kg / 14356 g
140.8 N
4 826 Gs
|
12.92 kg / 12920 g
126.7 N
~0 Gs
|
| 3 mm |
12.24 kg / 12238 g
120.1 N
4 455 Gs
|
11.01 kg / 11015 g
108.1 N
~0 Gs
|
| 5 mm |
8.61 kg / 8609 g
84.5 N
3 737 Gs
|
7.75 kg / 7748 g
76.0 N
~0 Gs
|
| 10 mm |
3.39 kg / 3393 g
33.3 N
2 346 Gs
|
3.05 kg / 3054 g
30.0 N
~0 Gs
|
| 20 mm |
0.67 kg / 673 g
6.6 N
1 045 Gs
|
0.61 kg / 606 g
5.9 N
~0 Gs
|
| 50 mm |
0.03 kg / 26 g
0.3 N
207 Gs
|
0.02 kg / 24 g
0.2 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 40x10x4x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 40x10x4x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.72 km/h
(7.98 m/s)
|
0.38 J | |
| 30 mm |
48.67 km/h
(13.52 m/s)
|
1.10 J | |
| 50 mm |
62.82 km/h
(17.45 m/s)
|
1.83 J | |
| 100 mm |
88.83 km/h
(24.68 m/s)
|
3.65 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 40x10x4x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x10x4x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 840 Mx | 98.4 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x10x4x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.31 kg | Standard |
| Woda (dno rzeki) |
10.66 kg
(+1.35 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalny udźwig magnesu – co ma na to wpływ?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- o szlifowanej powierzchni styku
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla najmłodszych
Magnesy neodymowe nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Ogromna siła
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Zagrożenie fizyczne
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ryzyko uczulenia
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Zagrożenie zapłonem
Pył generowany podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
