MPL 35x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020145
GTIN/EAN: 5906301811510
Długość
35 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
5.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.21 kg / 60.89 N
Indukcja magnetyczna
285.96 mT / 2860 Gs
Powłoka
[NiCuNi] nikiel
2.99 ZŁ z VAT / szt. + cena za transport
2.43 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie zostaw wiadomość korzystając z
formularz kontaktowy
na stronie kontakt.
Moc a także budowę magnesu neodymowego sprawdzisz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 35x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 35x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020145 |
| GTIN/EAN | 5906301811510 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 35 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 5.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.21 kg / 60.89 N |
| Indukcja magnetyczna ~ ? | 285.96 mT / 2860 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Przedstawione wartości są rezultat analizy inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 35x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2858 Gs
285.8 mT
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
średnie ryzyko |
| 1 mm |
2328 Gs
232.8 mT
|
4.12 kg / 9.09 lbs
4121.1 g / 40.4 N
|
średnie ryzyko |
| 2 mm |
1801 Gs
180.1 mT
|
2.47 kg / 5.44 lbs
2467.6 g / 24.2 N
|
średnie ryzyko |
| 3 mm |
1376 Gs
137.6 mT
|
1.44 kg / 3.18 lbs
1440.7 g / 14.1 N
|
słaby uchwyt |
| 5 mm |
832 Gs
83.2 mT
|
0.53 kg / 1.16 lbs
526.9 g / 5.2 N
|
słaby uchwyt |
| 10 mm |
318 Gs
31.8 mT
|
0.08 kg / 0.17 lbs
77.1 g / 0.8 N
|
słaby uchwyt |
| 15 mm |
158 Gs
15.8 mT
|
0.02 kg / 0.04 lbs
18.9 g / 0.2 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 35x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| 1 mm | Stal (~0.2) |
0.82 kg / 1.82 lbs
824.0 g / 8.1 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 1.09 lbs
494.0 g / 4.8 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
288.0 g / 2.8 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 35x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.86 kg / 4.11 lbs
1863.0 g / 18.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 1.37 lbs
621.0 g / 6.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.11 kg / 6.85 lbs
3105.0 g / 30.5 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 35x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 1.37 lbs
621.0 g / 6.1 N
|
| 1 mm |
|
1.55 kg / 3.42 lbs
1552.5 g / 15.2 N
|
| 2 mm |
|
3.11 kg / 6.85 lbs
3105.0 g / 30.5 N
|
| 3 mm |
|
4.66 kg / 10.27 lbs
4657.5 g / 45.7 N
|
| 5 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 10 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 11 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
| 12 mm |
|
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 35x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.21 kg / 13.69 lbs
6210.0 g / 60.9 N
|
OK |
| 40 °C | -2.2% |
6.07 kg / 13.39 lbs
6073.4 g / 59.6 N
|
OK |
| 60 °C | -4.4% |
5.94 kg / 13.09 lbs
5936.8 g / 58.2 N
|
|
| 80 °C | -6.6% |
5.80 kg / 12.79 lbs
5800.1 g / 56.9 N
|
|
| 100 °C | -28.8% |
4.42 kg / 9.75 lbs
4421.5 g / 43.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 35x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.34 kg / 27.19 lbs
4 231 Gs
|
1.85 kg / 4.08 lbs
1850 g / 18.2 N
|
N/A |
| 1 mm |
10.25 kg / 22.59 lbs
5 209 Gs
|
1.54 kg / 3.39 lbs
1537 g / 15.1 N
|
9.22 kg / 20.33 lbs
~0 Gs
|
| 2 mm |
8.19 kg / 18.05 lbs
4 656 Gs
|
1.23 kg / 2.71 lbs
1228 g / 12.0 N
|
7.37 kg / 16.24 lbs
~0 Gs
|
| 3 mm |
6.38 kg / 14.07 lbs
4 110 Gs
|
0.96 kg / 2.11 lbs
957 g / 9.4 N
|
5.74 kg / 12.66 lbs
~0 Gs
|
| 5 mm |
3.74 kg / 8.25 lbs
3 149 Gs
|
0.56 kg / 1.24 lbs
562 g / 5.5 N
|
3.37 kg / 7.43 lbs
~0 Gs
|
| 10 mm |
1.05 kg / 2.31 lbs
1 665 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 20 mm |
0.15 kg / 0.34 lbs
637 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.30 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
109 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 35x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 35x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.12 km/h
(9.48 m/s)
|
0.25 J | |
| 30 mm |
58.65 km/h
(16.29 m/s)
|
0.73 J | |
| 50 mm |
75.71 km/h
(21.03 m/s)
|
1.22 J | |
| 100 mm |
107.07 km/h
(29.74 m/s)
|
2.44 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 35x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 35x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 851 Mx | 58.5 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 35x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.21 kg | Standard |
| Woda (dno rzeki) |
7.11 kg
(+0.90 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) zyskują estetyczny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- której grubość wynosi ok. 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy zerowej szczelinie (brak farby)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Łatwopalność
Pył generowany podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Reakcje alergiczne
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Nie dawać dzieciom
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Urazy ciała
Bloki magnetyczne mogą połamać palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
