magnesy neodymowe

Neodymowe magnesy co to? Praktycznie wszystkie dostępne w naszym magazynie magnesy neodymowe znajdziesz na spisie poniżej zobacz ofertę magnesów

uchwyt z magnesem dla poszukiwaczy F 400 POWER z mocnym uchem bocznym i liną

Gdzie zakupić mocny UM neodymowy magnes do poszukiwań? Uchwyty z magnesami w trwałej i szczelnej stalowej obudowie nadają się doskonale do pracy w zmiennych i niedogodnych warunkach klimatycznych, między innymi na śniegu i w deszczu poznaj ofertę

magnesy z uchwytem

Magnetyczne uchwyty mogą być wykorzystywane do usprawnienia procesów produkcyjnych, eksploracji podwodnych terenów lub do odnajdywania meteorytów ze złota. Mocowania to śruba 3x [M10] duży udźwig zobacz ofertę...

Ciesz się przesyłką zamówienia w dniu zakupu jeśli zlecenie przyjęte jest do godziny 14:00 w dni robocze.

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 35x7x3 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020145

GTIN: 5906301811510

5.00

Długość

35 mm [±0,1 mm]

Szerokość

7 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

5.51 g

Kierunek magnesowania

↑ osiowy

Udźwig

6.21 kg / 60.89 N

Indukcja magnetyczna

285.96 mT / 2860 Gs

Powłoka

[NiCuNi] nikiel

2.99 z VAT / szt. + cena za transport

2.43 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
2.43 ZŁ
2.99 ZŁ
cena od 520 szt.
2.19 ZŁ
2.69 ZŁ
cena od 2080 szt.
2.14 ZŁ
2.63 ZŁ
Masz kłopot z wyborem?

Dzwoń do nas +48 888 99 98 98 lub daj znać przez formularz zapytania na stronie kontaktowej.
Moc i wygląd magnesów neodymowych skontrolujesz w naszym naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

MPL 35x7x3 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka MPL 35x7x3 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020145
GTIN 5906301811510
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 35 mm [±0,1 mm]
Szerokość 7 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 5.51 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 6.21 kg / 60.89 N
Indukcja magnetyczna ~ ? 285.96 mT / 2860 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 35x7x3 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [Min. - Max.] ? 12.2-12.6 kGs
remanencja Br [Min. - Max.] ? 1220-1260 T
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [Min. - Max.] ? 36-38 BH max MGOe
gęstość energii [Min. - Max.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Curie Temperatura TC 312 - 380 °C
Curie Temperatura TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅Cm
Siła wyginania 250 Mpa
Wytrzymałość na ściskanie 1000~1100 Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 106 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu neodymowego - dane

Poniższe dane stanowią bezpośredni efekt analizy inżynierskiej. Wartości bazują na algorytmach dla klasy NdFeB. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 35x7x3 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg) Status ryzyka
0 mm 2858 Gs
285.8 mT
6.21 kg / 6210.0 g
60.9 N
uwaga
1 mm 2328 Gs
232.8 mT
4.12 kg / 4121.1 g
40.4 N
uwaga
2 mm 1801 Gs
180.1 mT
2.47 kg / 2467.6 g
24.2 N
uwaga
3 mm 1376 Gs
137.6 mT
1.44 kg / 1440.7 g
14.1 N
bezpieczny
5 mm 832 Gs
83.2 mT
0.53 kg / 526.9 g
5.2 N
bezpieczny
10 mm 318 Gs
31.8 mT
0.08 kg / 77.1 g
0.8 N
bezpieczny
15 mm 158 Gs
15.8 mT
0.02 kg / 18.9 g
0.2 N
bezpieczny
20 mm 89 Gs
8.9 mT
0.01 kg / 6.0 g
0.1 N
bezpieczny
30 mm 35 Gs
3.5 mT
0.00 kg / 1.0 g
0.0 N
bezpieczny
50 mm 10 Gs
1.0 mT
0.00 kg / 0.1 g
0.0 N
bezpieczny
Table 2: Siła równoległa zsuwania (ściana)
MPL 35x7x3 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)
0 mm Stal (~0.2) 1.24 kg / 1242.0 g
12.2 N
1 mm Stal (~0.2) 0.82 kg / 824.0 g
8.1 N
2 mm Stal (~0.2) 0.49 kg / 494.0 g
4.8 N
3 mm Stal (~0.2) 0.29 kg / 288.0 g
2.8 N
5 mm Stal (~0.2) 0.11 kg / 106.0 g
1.0 N
10 mm Stal (~0.2) 0.02 kg / 16.0 g
0.2 N
15 mm Stal (~0.2) 0.00 kg / 4.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 35x7x3 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
1.86 kg / 1863.0 g
18.3 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
1.24 kg / 1242.0 g
12.2 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.62 kg / 621.0 g
6.1 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
3.11 kg / 3105.0 g
30.5 N
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 35x7x3 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.62 kg / 621.0 g
6.1 N
1 mm
25%
1.55 kg / 1552.5 g
15.2 N
2 mm
50%
3.11 kg / 3105.0 g
30.5 N
5 mm
100%
6.21 kg / 6210.0 g
60.9 N
10 mm
100%
6.21 kg / 6210.0 g
60.9 N
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 35x7x3 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 6.21 kg / 6210.0 g
60.9 N
OK
40 °C -2.2% 6.07 kg / 6073.4 g
59.6 N
OK
60 °C -4.4% 5.94 kg / 5936.8 g
58.2 N
80 °C -6.6% 5.80 kg / 5800.1 g
56.9 N
100 °C -28.8% 4.42 kg / 4421.5 g
43.4 N
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 35x7x3 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 12.34 kg / 12335 g
121.0 N
4 231 Gs
N/A
1 mm 10.25 kg / 10247 g
100.5 N
5 209 Gs
9.22 kg / 9223 g
90.5 N
~0 Gs
2 mm 8.19 kg / 8186 g
80.3 N
4 656 Gs
7.37 kg / 7367 g
72.3 N
~0 Gs
3 mm 6.38 kg / 6380 g
62.6 N
4 110 Gs
5.74 kg / 5742 g
56.3 N
~0 Gs
5 mm 3.74 kg / 3744 g
36.7 N
3 149 Gs
3.37 kg / 3370 g
33.1 N
~0 Gs
10 mm 1.05 kg / 1047 g
10.3 N
1 665 Gs
0.94 kg / 942 g
9.2 N
~0 Gs
20 mm 0.15 kg / 153 g
1.5 N
637 Gs
0.14 kg / 138 g
1.4 N
~0 Gs
50 mm 0.00 kg / 4 g
0.0 N
109 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 35x7x3 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 6.5 cm
Implant słuchowy 10 Gs (1.0 mT) 5.0 cm
Czasomierz 20 Gs (2.0 mT) 4.0 cm
Urządzenie mobilne 40 Gs (4.0 mT) 3.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 3.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 35x7x3 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 34.12 km/h
(9.48 m/s)
0.25 J
30 mm 58.65 km/h
(16.29 m/s)
0.73 J
50 mm 75.71 km/h
(21.03 m/s)
1.22 J
100 mm 107.07 km/h
(29.74 m/s)
2.44 J
Tabela 9: Odporność na korozję
MPL 35x7x3 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Table 10: Dane konstrukcyjne (Strumień)
MPL 35x7x3 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 5 851 Mx 58.5 µWb
Współczynnik Pc 0.25 Niski (Płaski)
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 35x7x3 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 6.21 kg Standard
Woda (dno rzeki) 7.11 kg
(+0.90 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na Ścianie (Ześlizg)

*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.

2. Wpływ Grubości Blachy

*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.

3. Wytrzymałość Temperaturowa

*Dla materiału N38 granica bezpieczeństwa to 80°C.

Szybki konwerter jednostek
Siła oderwania

Pole magnetyczne
Jak rozdzielać?

Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.

STAY
MOVE
Zasady Bezpieczeństwa
Elektronika

Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.

Rozruszniki Serca

Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.

Nie dla dzieci

Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.

Kruchy materiał

Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.

Do czego użyć tego magnesu?

Sprawdzone zastosowania dla wymiaru 15x10x2 mm

Elektronika i Czujniki

Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.

Modelarstwo i Druk 3D

Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.

Meble i Fronty

Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.

Sprawdź inne produkty

Model MPL 35x7x3 / N38 cechuje się niskim profilem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie doskonałe do budowy separatorów i maszyn. Jako sztabka magnetyczna o dużej mocy (ok. 6.21 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Kluczem do sukcesu jest zsuniecie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 35x7x3 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Magnesy płytkowe MPL 35x7x3 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak separatory magnetyczne oraz silniki liniowe. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 35x7x3 / N38 polecamy stosować mocne kleje epoksydowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Standardowo model MPL 35x7x3 / N38 jest magnesowany osiowo (wymiar 3 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (35x7 mm), co jest idealne do montażu na płasko. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 35x7x3 mm, co przy wadze 5.51 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 6.21 kg (siła ~60.89 N), co przy tak płaskim kształcie świadczy o wysokiej klasie materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety i wady neodymowych magnesów NdFeB.

Należy pamiętać, iż obok ekstremalnej mocy, magnesy te wyróżniają się następującymi plusami:

  • Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
  • Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
  • Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
  • Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
  • Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.

Mimo zalet, posiadają też wady:

  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.

Maksymalny udźwig magnesuco się na to składa?

Moc magnesu została wyznaczona dla optymalnej konfiguracji, uwzględniającej:

  • z zastosowaniem blachy ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
  • której grubość sięga przynajmniej 10 mm
  • z powierzchnią idealnie równą
  • przy całkowitym braku odstępu (bez farby)
  • przy prostopadłym kierunku działania siły (kąt 90 stopni)
  • w temp. ok. 20°C

Udźwig w praktyce – czynniki wpływu

Podczas codziennego użytkowania, realna moc zależy od kilku kluczowych aspektów, które przedstawiamy od najważniejszych:

  • Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Wektor obciążenia – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
  • Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
  • Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
  • Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).

* Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.

Zalety i wady neodymowych magnesów NdFeB.

Należy pamiętać, iż obok ekstremalnej mocy, magnesy te wyróżniają się następującymi plusami:

  • Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
  • Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
  • Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
  • Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
  • Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.

Mimo zalet, posiadają też wady:

  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.

Maksymalny udźwig magnesuco się na to składa?

Moc magnesu została wyznaczona dla optymalnej konfiguracji, uwzględniającej:

  • z zastosowaniem blachy ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
  • której grubość sięga przynajmniej 10 mm
  • z powierzchnią idealnie równą
  • przy całkowitym braku odstępu (bez farby)
  • przy prostopadłym kierunku działania siły (kąt 90 stopni)
  • w temp. ok. 20°C

Udźwig w praktyce – czynniki wpływu

Podczas codziennego użytkowania, realna moc zależy od kilku kluczowych aspektów, które przedstawiamy od najważniejszych:

  • Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Wektor obciążenia – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
  • Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
  • Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
  • Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).

* Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.

Instrukcja bezpiecznej obsługi magnesów

Moc przyciągania

Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.

Obróbka mechaniczna

Pył generowany podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.

Urządzenia elektroniczne

Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.

Niebezpieczeństwo przytrzaśnięcia

Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.

Nie przegrzewaj magnesów

Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.

Interferencja magnetyczna

Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.

Ostrzeżenie dla sercowców

Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.

Magnesy są kruche

Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.

Ryzyko połknięcia

Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.

Ostrzeżenie dla alergików

Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.

Bezpieczeństwo!

Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98