MPL 35x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020145
GTIN: 5906301811510
Długość
35 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
5.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.21 kg / 60.89 N
Indukcja magnetyczna
285.96 mT / 2860 Gs
Powłoka
[NiCuNi] nikiel
2.99 ZŁ z VAT / szt. + cena za transport
2.43 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo pisz poprzez
formularz zapytania
na stronie kontaktowej.
Masę oraz formę elementów magnetycznych zweryfikujesz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
MPL 35x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 35x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020145 |
| GTIN | 5906301811510 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 35 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 5.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.21 kg / 60.89 N |
| Indukcja magnetyczna ~ ? | 285.96 mT / 2860 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe informacje są rezultat kalkulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
MPL 35x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2858 Gs
285.8 mT
|
6.21 kg / 6210.0 g
60.9 N
|
mocny |
| 1 mm |
2328 Gs
232.8 mT
|
4.12 kg / 4121.1 g
40.4 N
|
mocny |
| 2 mm |
1801 Gs
180.1 mT
|
2.47 kg / 2467.6 g
24.2 N
|
mocny |
| 3 mm |
1376 Gs
137.6 mT
|
1.44 kg / 1440.7 g
14.1 N
|
bezpieczny |
| 5 mm |
832 Gs
83.2 mT
|
0.53 kg / 526.9 g
5.2 N
|
bezpieczny |
| 10 mm |
318 Gs
31.8 mT
|
0.08 kg / 77.1 g
0.8 N
|
bezpieczny |
| 15 mm |
158 Gs
15.8 mT
|
0.02 kg / 18.9 g
0.2 N
|
bezpieczny |
| 20 mm |
89 Gs
8.9 mT
|
0.01 kg / 6.0 g
0.1 N
|
bezpieczny |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 1.0 g
0.0 N
|
bezpieczny |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
MPL 35x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.24 kg / 1242.0 g
12.2 N
|
| 1 mm | Stal (~0.2) |
0.82 kg / 824.0 g
8.1 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 494.0 g
4.8 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 288.0 g
2.8 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 35x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.86 kg / 1863.0 g
18.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.24 kg / 1242.0 g
12.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 621.0 g
6.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.11 kg / 3105.0 g
30.5 N
|
MPL 35x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 621.0 g
6.1 N
|
| 1 mm |
|
1.55 kg / 1552.5 g
15.2 N
|
| 2 mm |
|
3.11 kg / 3105.0 g
30.5 N
|
| 5 mm |
|
6.21 kg / 6210.0 g
60.9 N
|
| 10 mm |
|
6.21 kg / 6210.0 g
60.9 N
|
MPL 35x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.21 kg / 6210.0 g
60.9 N
|
OK |
| 40 °C | -2.2% |
6.07 kg / 6073.4 g
59.6 N
|
OK |
| 60 °C | -4.4% |
5.94 kg / 5936.8 g
58.2 N
|
|
| 80 °C | -6.6% |
5.80 kg / 5800.1 g
56.9 N
|
|
| 100 °C | -28.8% |
4.42 kg / 4421.5 g
43.4 N
|
MPL 35x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.34 kg / 12335 g
121.0 N
4 231 Gs
|
N/A |
| 1 mm |
10.25 kg / 10247 g
100.5 N
5 209 Gs
|
9.22 kg / 9223 g
90.5 N
~0 Gs
|
| 2 mm |
8.19 kg / 8186 g
80.3 N
4 656 Gs
|
7.37 kg / 7367 g
72.3 N
~0 Gs
|
| 3 mm |
6.38 kg / 6380 g
62.6 N
4 110 Gs
|
5.74 kg / 5742 g
56.3 N
~0 Gs
|
| 5 mm |
3.74 kg / 3744 g
36.7 N
3 149 Gs
|
3.37 kg / 3370 g
33.1 N
~0 Gs
|
| 10 mm |
1.05 kg / 1047 g
10.3 N
1 665 Gs
|
0.94 kg / 942 g
9.2 N
~0 Gs
|
| 20 mm |
0.15 kg / 153 g
1.5 N
637 Gs
|
0.14 kg / 138 g
1.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 4 g
0.0 N
109 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 35x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 35x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.12 km/h
(9.48 m/s)
|
0.25 J | |
| 30 mm |
58.65 km/h
(16.29 m/s)
|
0.73 J | |
| 50 mm |
75.71 km/h
(21.03 m/s)
|
1.22 J | |
| 100 mm |
107.07 km/h
(29.74 m/s)
|
2.44 J |
MPL 35x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 35x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 851 Mx | 58.5 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
MPL 35x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.21 kg | Standard |
| Woda (dno rzeki) |
7.11 kg
(+0.90 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- z zastosowaniem podłoża ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez farby)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Maksymalna temperatura
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Ryzyko uczulenia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Magnesy są kruche
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Świadome użytkowanie
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Uwaga: zadławienie
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
