MPL 35x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020145
GTIN: 5906301811510
Długość
35 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
5.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.21 kg / 60.89 N
Indukcja magnetyczna
285.96 mT / 2860 Gs
Powłoka
[NiCuNi] nikiel
2.99 ZŁ z VAT / szt. + cena za transport
2.43 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz kłopot z wyborem?
Dzwoń do nas
+48 888 99 98 98
lub daj znać przez
formularz zapytania
na stronie kontaktowej.
Moc i wygląd magnesów neodymowych skontrolujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 35x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 35x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020145 |
| GTIN | 5906301811510 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 35 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 5.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.21 kg / 60.89 N |
| Indukcja magnetyczna ~ ? | 285.96 mT / 2860 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Poniższe dane stanowią bezpośredni efekt analizy inżynierskiej. Wartości bazują na algorytmach dla klasy NdFeB. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
MPL 35x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2858 Gs
285.8 mT
|
6.21 kg / 6210.0 g
60.9 N
|
uwaga |
| 1 mm |
2328 Gs
232.8 mT
|
4.12 kg / 4121.1 g
40.4 N
|
uwaga |
| 2 mm |
1801 Gs
180.1 mT
|
2.47 kg / 2467.6 g
24.2 N
|
uwaga |
| 3 mm |
1376 Gs
137.6 mT
|
1.44 kg / 1440.7 g
14.1 N
|
bezpieczny |
| 5 mm |
832 Gs
83.2 mT
|
0.53 kg / 526.9 g
5.2 N
|
bezpieczny |
| 10 mm |
318 Gs
31.8 mT
|
0.08 kg / 77.1 g
0.8 N
|
bezpieczny |
| 15 mm |
158 Gs
15.8 mT
|
0.02 kg / 18.9 g
0.2 N
|
bezpieczny |
| 20 mm |
89 Gs
8.9 mT
|
0.01 kg / 6.0 g
0.1 N
|
bezpieczny |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 1.0 g
0.0 N
|
bezpieczny |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
MPL 35x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.24 kg / 1242.0 g
12.2 N
|
| 1 mm | Stal (~0.2) |
0.82 kg / 824.0 g
8.1 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 494.0 g
4.8 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 288.0 g
2.8 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 35x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.86 kg / 1863.0 g
18.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.24 kg / 1242.0 g
12.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 621.0 g
6.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.11 kg / 3105.0 g
30.5 N
|
MPL 35x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 621.0 g
6.1 N
|
| 1 mm |
|
1.55 kg / 1552.5 g
15.2 N
|
| 2 mm |
|
3.11 kg / 3105.0 g
30.5 N
|
| 5 mm |
|
6.21 kg / 6210.0 g
60.9 N
|
| 10 mm |
|
6.21 kg / 6210.0 g
60.9 N
|
MPL 35x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.21 kg / 6210.0 g
60.9 N
|
OK |
| 40 °C | -2.2% |
6.07 kg / 6073.4 g
59.6 N
|
OK |
| 60 °C | -4.4% |
5.94 kg / 5936.8 g
58.2 N
|
|
| 80 °C | -6.6% |
5.80 kg / 5800.1 g
56.9 N
|
|
| 100 °C | -28.8% |
4.42 kg / 4421.5 g
43.4 N
|
MPL 35x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.34 kg / 12335 g
121.0 N
4 231 Gs
|
N/A |
| 1 mm |
10.25 kg / 10247 g
100.5 N
5 209 Gs
|
9.22 kg / 9223 g
90.5 N
~0 Gs
|
| 2 mm |
8.19 kg / 8186 g
80.3 N
4 656 Gs
|
7.37 kg / 7367 g
72.3 N
~0 Gs
|
| 3 mm |
6.38 kg / 6380 g
62.6 N
4 110 Gs
|
5.74 kg / 5742 g
56.3 N
~0 Gs
|
| 5 mm |
3.74 kg / 3744 g
36.7 N
3 149 Gs
|
3.37 kg / 3370 g
33.1 N
~0 Gs
|
| 10 mm |
1.05 kg / 1047 g
10.3 N
1 665 Gs
|
0.94 kg / 942 g
9.2 N
~0 Gs
|
| 20 mm |
0.15 kg / 153 g
1.5 N
637 Gs
|
0.14 kg / 138 g
1.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 4 g
0.0 N
109 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 35x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 35x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.12 km/h
(9.48 m/s)
|
0.25 J | |
| 30 mm |
58.65 km/h
(16.29 m/s)
|
0.73 J | |
| 50 mm |
75.71 km/h
(21.03 m/s)
|
1.22 J | |
| 100 mm |
107.07 km/h
(29.74 m/s)
|
2.44 J |
MPL 35x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 35x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 851 Mx | 58.5 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
MPL 35x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.21 kg | Standard |
| Woda (dno rzeki) |
7.11 kg
(+0.90 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne produkty
Zalety i wady neodymowych magnesów NdFeB.
Należy pamiętać, iż obok ekstremalnej mocy, magnesy te wyróżniają się następującymi plusami:
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Maksymalny udźwig magnesu – co się na to składa?
Moc magnesu została wyznaczona dla optymalnej konfiguracji, uwzględniającej:
- z zastosowaniem blachy ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- przy całkowitym braku odstępu (bez farby)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
Podczas codziennego użytkowania, realna moc zależy od kilku kluczowych aspektów, które przedstawiamy od najważniejszych:
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Zalety i wady neodymowych magnesów NdFeB.
Należy pamiętać, iż obok ekstremalnej mocy, magnesy te wyróżniają się następującymi plusami:
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Maksymalny udźwig magnesu – co się na to składa?
Moc magnesu została wyznaczona dla optymalnej konfiguracji, uwzględniającej:
- z zastosowaniem blachy ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- przy całkowitym braku odstępu (bez farby)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
Podczas codziennego użytkowania, realna moc zależy od kilku kluczowych aspektów, które przedstawiamy od najważniejszych:
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Obróbka mechaniczna
Pył generowany podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Urządzenia elektroniczne
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Niebezpieczeństwo przytrzaśnięcia
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Magnesy są kruche
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Ryzyko połknięcia
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Ostrzeżenie dla alergików
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Bezpieczeństwo!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
