MPL 35x35x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020144
GTIN/EAN: 5906301811503
Długość
35 mm [±0,1 mm]
Szerokość
35 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
91.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
26.88 kg / 263.71 N
Indukcja magnetyczna
282.90 mT / 2829 Gs
Powłoka
[NiCuNi] nikiel
35.10 ZŁ z VAT / szt. + cena za transport
28.54 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo pisz poprzez
formularz zgłoszeniowy
przez naszą stronę.
Masę oraz budowę magnesów neodymowych zweryfikujesz u nas w
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja produktu - MPL 35x35x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 35x35x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020144 |
| GTIN/EAN | 5906301811503 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 35 mm [±0,1 mm] |
| Szerokość | 35 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 91.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 26.88 kg / 263.71 N |
| Indukcja magnetyczna ~ ? | 282.90 mT / 2829 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Niniejsze informacje są bezpośredni efekt symulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 35x35x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2829 Gs
282.9 mT
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
krytyczny poziom |
| 1 mm |
2727 Gs
272.7 mT
|
24.98 kg / 55.08 lbs
24982.7 g / 245.1 N
|
krytyczny poziom |
| 2 mm |
2613 Gs
261.3 mT
|
22.94 kg / 50.57 lbs
22939.0 g / 225.0 N
|
krytyczny poziom |
| 3 mm |
2491 Gs
249.1 mT
|
20.84 kg / 45.95 lbs
20841.0 g / 204.4 N
|
krytyczny poziom |
| 5 mm |
2232 Gs
223.2 mT
|
16.73 kg / 36.88 lbs
16730.5 g / 164.1 N
|
krytyczny poziom |
| 10 mm |
1600 Gs
160.0 mT
|
8.60 kg / 18.96 lbs
8600.7 g / 84.4 N
|
średnie ryzyko |
| 15 mm |
1102 Gs
110.2 mT
|
4.08 kg / 9.00 lbs
4082.9 g / 40.1 N
|
średnie ryzyko |
| 20 mm |
757 Gs
75.7 mT
|
1.93 kg / 4.25 lbs
1925.7 g / 18.9 N
|
bezpieczny |
| 30 mm |
376 Gs
37.6 mT
|
0.48 kg / 1.05 lbs
475.7 g / 4.7 N
|
bezpieczny |
| 50 mm |
122 Gs
12.2 mT
|
0.05 kg / 0.11 lbs
49.9 g / 0.5 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 35x35x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.38 kg / 11.85 lbs
5376.0 g / 52.7 N
|
| 1 mm | Stal (~0.2) |
5.00 kg / 11.01 lbs
4996.0 g / 49.0 N
|
| 2 mm | Stal (~0.2) |
4.59 kg / 10.11 lbs
4588.0 g / 45.0 N
|
| 3 mm | Stal (~0.2) |
4.17 kg / 9.19 lbs
4168.0 g / 40.9 N
|
| 5 mm | Stal (~0.2) |
3.35 kg / 7.38 lbs
3346.0 g / 32.8 N
|
| 10 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1720.0 g / 16.9 N
|
| 15 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
816.0 g / 8.0 N
|
| 20 mm | Stal (~0.2) |
0.39 kg / 0.85 lbs
386.0 g / 3.8 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 35x35x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.06 kg / 17.78 lbs
8064.0 g / 79.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.38 kg / 11.85 lbs
5376.0 g / 52.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.69 kg / 5.93 lbs
2688.0 g / 26.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
13.44 kg / 29.63 lbs
13440.0 g / 131.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 35x35x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.34 kg / 2.96 lbs
1344.0 g / 13.2 N
|
| 1 mm |
|
3.36 kg / 7.41 lbs
3360.0 g / 33.0 N
|
| 2 mm |
|
6.72 kg / 14.82 lbs
6720.0 g / 65.9 N
|
| 3 mm |
|
10.08 kg / 22.22 lbs
10080.0 g / 98.9 N
|
| 5 mm |
|
16.80 kg / 37.04 lbs
16800.0 g / 164.8 N
|
| 10 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
| 11 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
| 12 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 35x35x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
OK |
| 40 °C | -2.2% |
26.29 kg / 57.96 lbs
26288.6 g / 257.9 N
|
OK |
| 60 °C | -4.4% |
25.70 kg / 56.65 lbs
25697.3 g / 252.1 N
|
|
| 80 °C | -6.6% |
25.11 kg / 55.35 lbs
25105.9 g / 246.3 N
|
|
| 100 °C | -28.8% |
19.14 kg / 42.19 lbs
19138.6 g / 187.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 35x35x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
60.43 kg / 133.22 lbs
4 428 Gs
|
9.06 kg / 19.98 lbs
9064 g / 88.9 N
|
N/A |
| 1 mm |
58.36 kg / 128.67 lbs
5 560 Gs
|
8.75 kg / 19.30 lbs
8754 g / 85.9 N
|
52.53 kg / 115.80 lbs
~0 Gs
|
| 2 mm |
56.16 kg / 123.82 lbs
5 454 Gs
|
8.42 kg / 18.57 lbs
8424 g / 82.6 N
|
50.55 kg / 111.44 lbs
~0 Gs
|
| 3 mm |
53.89 kg / 118.81 lbs
5 343 Gs
|
8.08 kg / 17.82 lbs
8084 g / 79.3 N
|
48.50 kg / 106.93 lbs
~0 Gs
|
| 5 mm |
49.22 kg / 108.50 lbs
5 106 Gs
|
7.38 kg / 16.28 lbs
7382 g / 72.4 N
|
44.29 kg / 97.65 lbs
~0 Gs
|
| 10 mm |
37.61 kg / 82.92 lbs
4 463 Gs
|
5.64 kg / 12.44 lbs
5642 g / 55.3 N
|
33.85 kg / 74.63 lbs
~0 Gs
|
| 20 mm |
19.33 kg / 42.63 lbs
3 200 Gs
|
2.90 kg / 6.39 lbs
2900 g / 28.5 N
|
17.40 kg / 38.36 lbs
~0 Gs
|
| 50 mm |
2.10 kg / 4.64 lbs
1 056 Gs
|
0.32 kg / 0.70 lbs
316 g / 3.1 N
|
1.89 kg / 4.18 lbs
~0 Gs
|
| 60 mm |
1.07 kg / 2.36 lbs
753 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 70 mm |
0.57 kg / 1.26 lbs
550 Gs
|
0.09 kg / 0.19 lbs
86 g / 0.8 N
|
0.51 kg / 1.13 lbs
~0 Gs
|
| 80 mm |
0.32 kg / 0.70 lbs
411 Gs
|
0.05 kg / 0.11 lbs
48 g / 0.5 N
|
0.29 kg / 0.63 lbs
~0 Gs
|
| 90 mm |
0.19 kg / 0.41 lbs
313 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 100 mm |
0.11 kg / 0.25 lbs
244 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.22 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 35x35x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 35x35x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.41 km/h
(5.67 m/s)
|
1.48 J | |
| 30 mm |
30.21 km/h
(8.39 m/s)
|
3.23 J | |
| 50 mm |
38.62 km/h
(10.73 m/s)
|
5.29 J | |
| 100 mm |
54.55 km/h
(15.15 m/s)
|
10.55 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 35x35x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 35x35x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 021 Mx | 380.2 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 35x35x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 26.88 kg | Standard |
| Woda (dno rzeki) |
30.78 kg
(+3.90 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem płyty ze stali niskowęglowej, która służy jako zwora magnetyczna
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- przy całkowitym braku odstępu (brak powłok)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Stale stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ostrożność wymagana
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Urządzenia elektroniczne
Bardzo silne pole magnetyczne może usunąć informacje na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Uszkodzenia czujników
Silne pole magnetyczne destabilizuje działanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Magnesy są kruche
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Chronić przed dziećmi
Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Reakcje alergiczne
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
