MPL 35x35x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020144
GTIN/EAN: 5906301811503
Długość
35 mm [±0,1 mm]
Szerokość
35 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
91.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
26.88 kg / 263.71 N
Indukcja magnetyczna
282.90 mT / 2829 Gs
Powłoka
[NiCuNi] nikiel
35.10 ZŁ z VAT / szt. + cena za transport
28.54 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo daj znać przez
nasz formularz online
w sekcji kontakt.
Udźwig i kształt magnesów sprawdzisz w naszym
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MPL 35x35x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 35x35x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020144 |
| GTIN/EAN | 5906301811503 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 35 mm [±0,1 mm] |
| Szerokość | 35 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 91.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 26.88 kg / 263.71 N |
| Indukcja magnetyczna ~ ? | 282.90 mT / 2829 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Poniższe dane są bezpośredni efekt symulacji inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 35x35x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2829 Gs
282.9 mT
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
miażdżący |
| 1 mm |
2727 Gs
272.7 mT
|
24.98 kg / 55.08 lbs
24982.7 g / 245.1 N
|
miażdżący |
| 2 mm |
2613 Gs
261.3 mT
|
22.94 kg / 50.57 lbs
22939.0 g / 225.0 N
|
miażdżący |
| 3 mm |
2491 Gs
249.1 mT
|
20.84 kg / 45.95 lbs
20841.0 g / 204.4 N
|
miażdżący |
| 5 mm |
2232 Gs
223.2 mT
|
16.73 kg / 36.88 lbs
16730.5 g / 164.1 N
|
miażdżący |
| 10 mm |
1600 Gs
160.0 mT
|
8.60 kg / 18.96 lbs
8600.7 g / 84.4 N
|
średnie ryzyko |
| 15 mm |
1102 Gs
110.2 mT
|
4.08 kg / 9.00 lbs
4082.9 g / 40.1 N
|
średnie ryzyko |
| 20 mm |
757 Gs
75.7 mT
|
1.93 kg / 4.25 lbs
1925.7 g / 18.9 N
|
bezpieczny |
| 30 mm |
376 Gs
37.6 mT
|
0.48 kg / 1.05 lbs
475.7 g / 4.7 N
|
bezpieczny |
| 50 mm |
122 Gs
12.2 mT
|
0.05 kg / 0.11 lbs
49.9 g / 0.5 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 35x35x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.38 kg / 11.85 lbs
5376.0 g / 52.7 N
|
| 1 mm | Stal (~0.2) |
5.00 kg / 11.01 lbs
4996.0 g / 49.0 N
|
| 2 mm | Stal (~0.2) |
4.59 kg / 10.11 lbs
4588.0 g / 45.0 N
|
| 3 mm | Stal (~0.2) |
4.17 kg / 9.19 lbs
4168.0 g / 40.9 N
|
| 5 mm | Stal (~0.2) |
3.35 kg / 7.38 lbs
3346.0 g / 32.8 N
|
| 10 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1720.0 g / 16.9 N
|
| 15 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
816.0 g / 8.0 N
|
| 20 mm | Stal (~0.2) |
0.39 kg / 0.85 lbs
386.0 g / 3.8 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 35x35x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.06 kg / 17.78 lbs
8064.0 g / 79.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.38 kg / 11.85 lbs
5376.0 g / 52.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.69 kg / 5.93 lbs
2688.0 g / 26.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
13.44 kg / 29.63 lbs
13440.0 g / 131.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 35x35x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.34 kg / 2.96 lbs
1344.0 g / 13.2 N
|
| 1 mm |
|
3.36 kg / 7.41 lbs
3360.0 g / 33.0 N
|
| 2 mm |
|
6.72 kg / 14.82 lbs
6720.0 g / 65.9 N
|
| 3 mm |
|
10.08 kg / 22.22 lbs
10080.0 g / 98.9 N
|
| 5 mm |
|
16.80 kg / 37.04 lbs
16800.0 g / 164.8 N
|
| 10 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
| 11 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
| 12 mm |
|
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 35x35x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
26.88 kg / 59.26 lbs
26880.0 g / 263.7 N
|
OK |
| 40 °C | -2.2% |
26.29 kg / 57.96 lbs
26288.6 g / 257.9 N
|
OK |
| 60 °C | -4.4% |
25.70 kg / 56.65 lbs
25697.3 g / 252.1 N
|
|
| 80 °C | -6.6% |
25.11 kg / 55.35 lbs
25105.9 g / 246.3 N
|
|
| 100 °C | -28.8% |
19.14 kg / 42.19 lbs
19138.6 g / 187.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 35x35x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
60.43 kg / 133.22 lbs
4 428 Gs
|
9.06 kg / 19.98 lbs
9064 g / 88.9 N
|
N/A |
| 1 mm |
58.36 kg / 128.67 lbs
5 560 Gs
|
8.75 kg / 19.30 lbs
8754 g / 85.9 N
|
52.53 kg / 115.80 lbs
~0 Gs
|
| 2 mm |
56.16 kg / 123.82 lbs
5 454 Gs
|
8.42 kg / 18.57 lbs
8424 g / 82.6 N
|
50.55 kg / 111.44 lbs
~0 Gs
|
| 3 mm |
53.89 kg / 118.81 lbs
5 343 Gs
|
8.08 kg / 17.82 lbs
8084 g / 79.3 N
|
48.50 kg / 106.93 lbs
~0 Gs
|
| 5 mm |
49.22 kg / 108.50 lbs
5 106 Gs
|
7.38 kg / 16.28 lbs
7382 g / 72.4 N
|
44.29 kg / 97.65 lbs
~0 Gs
|
| 10 mm |
37.61 kg / 82.92 lbs
4 463 Gs
|
5.64 kg / 12.44 lbs
5642 g / 55.3 N
|
33.85 kg / 74.63 lbs
~0 Gs
|
| 20 mm |
19.33 kg / 42.63 lbs
3 200 Gs
|
2.90 kg / 6.39 lbs
2900 g / 28.5 N
|
17.40 kg / 38.36 lbs
~0 Gs
|
| 50 mm |
2.10 kg / 4.64 lbs
1 056 Gs
|
0.32 kg / 0.70 lbs
316 g / 3.1 N
|
1.89 kg / 4.18 lbs
~0 Gs
|
| 60 mm |
1.07 kg / 2.36 lbs
753 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 70 mm |
0.57 kg / 1.26 lbs
550 Gs
|
0.09 kg / 0.19 lbs
86 g / 0.8 N
|
0.51 kg / 1.13 lbs
~0 Gs
|
| 80 mm |
0.32 kg / 0.70 lbs
411 Gs
|
0.05 kg / 0.11 lbs
48 g / 0.5 N
|
0.29 kg / 0.63 lbs
~0 Gs
|
| 90 mm |
0.19 kg / 0.41 lbs
313 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 100 mm |
0.11 kg / 0.25 lbs
244 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.22 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 35x35x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 35x35x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.41 km/h
(5.67 m/s)
|
1.48 J | |
| 30 mm |
30.21 km/h
(8.39 m/s)
|
3.23 J | |
| 50 mm |
38.62 km/h
(10.73 m/s)
|
5.29 J | |
| 100 mm |
54.55 km/h
(15.15 m/s)
|
10.55 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 35x35x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 35x35x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 021 Mx | 380.2 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 35x35x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 26.88 kg | Standard |
| Woda (dno rzeki) |
30.78 kg
(+3.90 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z powierzchnią wolną od rys
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Dystans (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda blacha nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Stale stopowe redukują przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Wpływ na smartfony
Ważna informacja: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Zagrożenie dla elektroniki
Bardzo silne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Podatność na pękanie
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Zakaz zabawy
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Utrata mocy w cieple
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
