MPL 30x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020142
GTIN/EAN: 5906301811480
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.27 kg / 238.07 N
Indukcja magnetyczna
512.53 mT / 5125 Gs
Powłoka
[NiCuNi] nikiel
43.22 ZŁ z VAT / szt. + cena za transport
35.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub napisz poprzez
nasz formularz online
na stronie kontaktowej.
Siłę i formę magnesów przetestujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 30x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020142 |
| GTIN/EAN | 5906301811480 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.27 kg / 238.07 N |
| Indukcja magnetyczna ~ ? | 512.53 mT / 5125 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Niniejsze informacje stanowią rezultat kalkulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 30x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5124 Gs
512.4 mT
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
niebezpieczny! |
| 1 mm |
4730 Gs
473.0 mT
|
20.68 kg / 45.60 lbs
20685.0 g / 202.9 N
|
niebezpieczny! |
| 2 mm |
4335 Gs
433.5 mT
|
17.37 kg / 38.30 lbs
17370.7 g / 170.4 N
|
niebezpieczny! |
| 3 mm |
3950 Gs
395.0 mT
|
14.43 kg / 31.80 lbs
14425.2 g / 141.5 N
|
niebezpieczny! |
| 5 mm |
3240 Gs
324.0 mT
|
9.71 kg / 21.40 lbs
9706.2 g / 95.2 N
|
uwaga |
| 10 mm |
1923 Gs
192.3 mT
|
3.42 kg / 7.53 lbs
3417.4 g / 33.5 N
|
uwaga |
| 15 mm |
1163 Gs
116.3 mT
|
1.25 kg / 2.76 lbs
1250.2 g / 12.3 N
|
niskie ryzyko |
| 20 mm |
736 Gs
73.6 mT
|
0.50 kg / 1.10 lbs
500.4 g / 4.9 N
|
niskie ryzyko |
| 30 mm |
338 Gs
33.8 mT
|
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
|
niskie ryzyko |
| 50 mm |
106 Gs
10.6 mT
|
0.01 kg / 0.02 lbs
10.3 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 30x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.85 kg / 10.70 lbs
4854.0 g / 47.6 N
|
| 1 mm | Stal (~0.2) |
4.14 kg / 9.12 lbs
4136.0 g / 40.6 N
|
| 2 mm | Stal (~0.2) |
3.47 kg / 7.66 lbs
3474.0 g / 34.1 N
|
| 3 mm | Stal (~0.2) |
2.89 kg / 6.36 lbs
2886.0 g / 28.3 N
|
| 5 mm | Stal (~0.2) |
1.94 kg / 4.28 lbs
1942.0 g / 19.1 N
|
| 10 mm | Stal (~0.2) |
0.68 kg / 1.51 lbs
684.0 g / 6.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 30x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.28 kg / 16.05 lbs
7281.0 g / 71.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.85 kg / 10.70 lbs
4854.0 g / 47.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.43 kg / 5.35 lbs
2427.0 g / 23.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.14 kg / 26.75 lbs
12135.0 g / 119.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 30x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.21 kg / 2.68 lbs
1213.5 g / 11.9 N
|
| 1 mm |
|
3.03 kg / 6.69 lbs
3033.8 g / 29.8 N
|
| 2 mm |
|
6.07 kg / 13.38 lbs
6067.5 g / 59.5 N
|
| 3 mm |
|
9.10 kg / 20.06 lbs
9101.3 g / 89.3 N
|
| 5 mm |
|
15.17 kg / 33.44 lbs
15168.8 g / 148.8 N
|
| 10 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
| 11 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
| 12 mm |
|
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MPL 30x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.27 kg / 53.51 lbs
24270.0 g / 238.1 N
|
OK |
| 40 °C | -2.2% |
23.74 kg / 52.33 lbs
23736.1 g / 232.9 N
|
OK |
| 60 °C | -4.4% |
23.20 kg / 51.15 lbs
23202.1 g / 227.6 N
|
OK |
| 80 °C | -6.6% |
22.67 kg / 49.97 lbs
22668.2 g / 222.4 N
|
|
| 100 °C | -28.8% |
17.28 kg / 38.10 lbs
17280.2 g / 169.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 30x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
97.11 kg / 214.09 lbs
5 859 Gs
|
14.57 kg / 32.11 lbs
14567 g / 142.9 N
|
N/A |
| 1 mm |
89.88 kg / 198.15 lbs
9 859 Gs
|
13.48 kg / 29.72 lbs
13482 g / 132.3 N
|
80.89 kg / 178.34 lbs
~0 Gs
|
| 2 mm |
82.77 kg / 182.47 lbs
9 461 Gs
|
12.42 kg / 27.37 lbs
12415 g / 121.8 N
|
74.49 kg / 164.22 lbs
~0 Gs
|
| 3 mm |
75.96 kg / 167.47 lbs
9 063 Gs
|
11.39 kg / 25.12 lbs
11394 g / 111.8 N
|
68.37 kg / 150.72 lbs
~0 Gs
|
| 5 mm |
63.42 kg / 139.81 lbs
8 281 Gs
|
9.51 kg / 20.97 lbs
9513 g / 93.3 N
|
57.08 kg / 125.83 lbs
~0 Gs
|
| 10 mm |
38.84 kg / 85.62 lbs
6 481 Gs
|
5.83 kg / 12.84 lbs
5826 g / 57.1 N
|
34.95 kg / 77.06 lbs
~0 Gs
|
| 20 mm |
13.67 kg / 30.15 lbs
3 845 Gs
|
2.05 kg / 4.52 lbs
2051 g / 20.1 N
|
12.31 kg / 27.13 lbs
~0 Gs
|
| 50 mm |
0.88 kg / 1.94 lbs
976 Gs
|
0.13 kg / 0.29 lbs
132 g / 1.3 N
|
0.79 kg / 1.75 lbs
~0 Gs
|
| 60 mm |
0.42 kg / 0.93 lbs
675 Gs
|
0.06 kg / 0.14 lbs
63 g / 0.6 N
|
0.38 kg / 0.84 lbs
~0 Gs
|
| 70 mm |
0.22 kg / 0.48 lbs
484 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.43 lbs
~0 Gs
|
| 80 mm |
0.12 kg / 0.26 lbs
358 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 90 mm |
0.07 kg / 0.15 lbs
272 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 100 mm |
0.04 kg / 0.09 lbs
211 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 30x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 30x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.96 km/h
(4.99 m/s)
|
1.12 J | |
| 30 mm |
28.76 km/h
(7.99 m/s)
|
2.87 J | |
| 50 mm |
37.04 km/h
(10.29 m/s)
|
4.76 J | |
| 100 mm |
52.37 km/h
(14.55 m/s)
|
9.52 J |
Tabela 9: Odporność na korozję
MPL 30x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 30x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 30 878 Mx | 308.8 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.27 kg | Standard |
| Woda (dno rzeki) |
27.79 kg
(+3.52 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają nowoczesny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- z powierzchnią idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Dystans – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Ryzyko uczulenia
Część populacji ma alergię kontaktową na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Zalecamy noszenie rękawiczek ochronnych.
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Ryzyko złamań
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kompas i GPS
Silne pole magnetyczne zakłóca działanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Ryzyko rozmagnesowania
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Nie lekceważ mocy
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Chronić przed dziećmi
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Zagrożenie życia
Pacjenci z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
