Magnesy neodymowe: moc, której szukasz

Chcesz kupić naprawdę silne magnesy? Oferujemy bogatą gamę magnesów o różnych kształtach i wymiarach. To najlepszy wybór do zastosowań domowych, warsztatu oraz modelarstwa. Przejrzyj asortyment w naszym magazynie.

poznaj pełną ofertę

Sprzęt dla poszukiwaczy skarbów

Zacznij swoje hobby z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz mocne linki sprawdzą się w trudnych warunkach wodnych.

znajdź zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Profesjonalne rozwiązania do mocowania bezinwazyjnego. Mocowania gwintowane (zewnętrznym lub wewnętrznym) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy instalacji lamp, czujników oraz banerów.

sprawdź parametry techniczne

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 30x20x20 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020142

GTIN/EAN: 5906301811480

5.00

Długość

30 mm [±0,1 mm]

Szerokość

20 mm [±0,1 mm]

Wysokość

20 mm [±0,1 mm]

Waga

90 g

Kierunek magnesowania

↑ osiowy

Udźwig

24.27 kg / 238.07 N

Indukcja magnetyczna

512.53 mT / 5125 Gs

Powłoka

[NiCuNi] nikiel

43.22 z VAT / szt. + cena za transport

35.14 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
35.14 ZŁ
43.22 ZŁ
cena od 20 szt.
33.03 ZŁ
40.63 ZŁ
cena od 80 szt.
30.92 ZŁ
38.04 ZŁ
Potrzebujesz porady?

Dzwoń do nas +48 888 99 98 98 lub pisz za pomocą formularz na stronie kontakt.
Siłę oraz wygląd magnesu neodymowego zobaczysz w naszym narzędziu online do obliczeń.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Parametry techniczne - MPL 30x20x20 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 30x20x20 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020142
GTIN/EAN 5906301811480
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 30 mm [±0,1 mm]
Szerokość 20 mm [±0,1 mm]
Wysokość 20 mm [±0,1 mm]
Waga 90 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 24.27 kg / 238.07 N
Indukcja magnetyczna ~ ? 512.53 mT / 5125 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 30x20x20 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu - dane

Poniższe dane stanowią wynik symulacji fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MPL 30x20x20 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 5124 Gs
512.4 mT
24.27 kg / 24270.0 g
238.1 N
krytyczny poziom
1 mm 4730 Gs
473.0 mT
20.68 kg / 20685.0 g
202.9 N
krytyczny poziom
2 mm 4335 Gs
433.5 mT
17.37 kg / 17370.7 g
170.4 N
krytyczny poziom
3 mm 3950 Gs
395.0 mT
14.43 kg / 14425.2 g
141.5 N
krytyczny poziom
5 mm 3240 Gs
324.0 mT
9.71 kg / 9706.2 g
95.2 N
mocny
10 mm 1923 Gs
192.3 mT
3.42 kg / 3417.4 g
33.5 N
mocny
15 mm 1163 Gs
116.3 mT
1.25 kg / 1250.2 g
12.3 N
niskie ryzyko
20 mm 736 Gs
73.6 mT
0.50 kg / 500.4 g
4.9 N
niskie ryzyko
30 mm 338 Gs
33.8 mT
0.11 kg / 105.3 g
1.0 N
niskie ryzyko
50 mm 106 Gs
10.6 mT
0.01 kg / 10.3 g
0.1 N
niskie ryzyko

Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 30x20x20 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 4.85 kg / 4854.0 g
47.6 N
1 mm Stal (~0.2) 4.14 kg / 4136.0 g
40.6 N
2 mm Stal (~0.2) 3.47 kg / 3474.0 g
34.1 N
3 mm Stal (~0.2) 2.89 kg / 2886.0 g
28.3 N
5 mm Stal (~0.2) 1.94 kg / 1942.0 g
19.1 N
10 mm Stal (~0.2) 0.68 kg / 684.0 g
6.7 N
15 mm Stal (~0.2) 0.25 kg / 250.0 g
2.5 N
20 mm Stal (~0.2) 0.10 kg / 100.0 g
1.0 N
30 mm Stal (~0.2) 0.02 kg / 22.0 g
0.2 N
50 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N

Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 30x20x20 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
7.28 kg / 7281.0 g
71.4 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
4.85 kg / 4854.0 g
47.6 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
2.43 kg / 2427.0 g
23.8 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
12.14 kg / 12135.0 g
119.0 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 30x20x20 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
5%
1.21 kg / 1213.5 g
11.9 N
1 mm
13%
3.03 kg / 3033.8 g
29.8 N
2 mm
25%
6.07 kg / 6067.5 g
59.5 N
5 mm
63%
15.17 kg / 15168.8 g
148.8 N
10 mm
100%
24.27 kg / 24270.0 g
238.1 N

Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 30x20x20 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 24.27 kg / 24270.0 g
238.1 N
OK
40 °C -2.2% 23.74 kg / 23736.1 g
232.9 N
OK
60 °C -4.4% 23.20 kg / 23202.1 g
227.6 N
OK
80 °C -6.6% 22.67 kg / 22668.2 g
222.4 N
100 °C -28.8% 17.28 kg / 17280.2 g
169.5 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 30x20x20 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 97.11 kg / 97112 g
952.7 N
5 859 Gs
N/A
1 mm 89.88 kg / 89881 g
881.7 N
9 859 Gs
80.89 kg / 80893 g
793.6 N
~0 Gs
2 mm 82.77 kg / 82767 g
811.9 N
9 461 Gs
74.49 kg / 74490 g
730.7 N
~0 Gs
3 mm 75.96 kg / 75963 g
745.2 N
9 063 Gs
68.37 kg / 68367 g
670.7 N
~0 Gs
5 mm 63.42 kg / 63419 g
622.1 N
8 281 Gs
57.08 kg / 57077 g
559.9 N
~0 Gs
10 mm 38.84 kg / 38837 g
381.0 N
6 481 Gs
34.95 kg / 34954 g
342.9 N
~0 Gs
20 mm 13.67 kg / 13674 g
134.1 N
3 845 Gs
12.31 kg / 12307 g
120.7 N
~0 Gs
50 mm 0.88 kg / 880 g
8.6 N
976 Gs
0.79 kg / 792 g
7.8 N
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 30x20x20 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 16.0 cm
Implant słuchowy 10 Gs (1.0 mT) 12.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 10.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 7.5 cm
Pilot do auta 50 Gs (5.0 mT) 7.0 cm
Karta płatnicza 400 Gs (40.0 mT) 3.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.5 cm

Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 30x20x20 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 17.96 km/h
(4.99 m/s)
1.12 J
30 mm 28.76 km/h
(7.99 m/s)
2.87 J
50 mm 37.04 km/h
(10.29 m/s)
4.76 J
100 mm 52.37 km/h
(14.55 m/s)
9.52 J

Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x20x20 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Flux)
MPL 30x20x20 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 30 878 Mx 308.8 µWb
Współczynnik Pc 0.74 Wysoki (Stabilny)

Tabela 11: Zastosowanie podwodne
MPL 30x20x20 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 24.27 kg Standard
Woda (dno rzeki) 27.79 kg
(+3.52 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Udźwig w pionie

*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.

2. Grubość podłoża

*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla materiału N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020142-2025
Kalkulator miar
Udźwig magnesu

Indukcja magnetyczna

Zobacz też inne propozycje

Model MPL 30x20x20 / N38 cechuje się płaskim kształtem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie doskonałe do budowy separatorów i maszyn. Jako sztabka magnetyczna o dużej mocy (ok. 24.27 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Ponadto, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 30x20x20 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Magnesy płytkowe MPL 30x20x20 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak separatory magnetyczne oraz silniki liniowe. Dzięki płaskiej powierzchni i dużej sile (ok. 24.27 kg), są idealne jako ukryte zamki w meblarstwie oraz elementy montażowe w automatyce. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Standardowo model MPL 30x20x20 / N38 jest magnesowany przez grubość (wymiar 20 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: 30 mm (długość), 20 mm (szerokość) i 20 mm (grubość). Kluczowym parametrem jest tutaj siła trzymania wynoszący około 24.27 kg (siła ~238.07 N), co przy tak kompaktowym kształcie świadczy o wysokiej klasie materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Plusy

Warto zwrócić uwagę, że obok ekstremalnej siły, magnesy te cechują się następującymi plusami:
  • Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
  • Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
  • Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
  • Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.

Minusy

Mimo zalet, posiadają też wady:
  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Charakterystyka udźwigu

Maksymalna moc trzymania magnesuco ma na to wpływ?

Moc magnesu została wyznaczona dla warunków idealnego styku, zakładającej:
  • na bloku wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
  • której grubość wynosi ok. 10 mm
  • charakteryzującej się gładkością
  • w warunkach bezszczelinowych (metal do metalu)
  • podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
  • w warunkach ok. 20°C

Praktyczny udźwig: czynniki wpływające

W praktyce, faktyczna siła trzymania zależy od kilku kluczowych aspektów, uszeregowanych od kluczowych:
  • Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
  • Rodzaj stali – stal miękka daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
  • Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).

Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.

BHP przy magnesach
Tylko dla dorosłych

Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.

Kruchy spiek

Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.

Wrażliwość na ciepło

Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.

Siła neodymu

Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.

Zagrożenie dla nawigacji

Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.

Rozruszniki serca

Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.

Niszczenie danych

Nie zbliżaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.

Uszkodzenia ciała

Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.

Ryzyko pożaru

Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.

Dla uczulonych

Niektóre osoby ma alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać silną reakcję alergiczną. Rekomendujemy używanie rękawiczek ochronnych.

Bezpieczeństwo! Więcej informacji o zagrożeniach w artykule: Niebezpieczne magnesy.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98