MPL 30x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020142
GTIN/EAN: 5906301811480
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.27 kg / 238.07 N
Indukcja magnetyczna
512.53 mT / 5125 Gs
Powłoka
[NiCuNi] nikiel
43.22 ZŁ z VAT / szt. + cena za transport
35.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub zostaw wiadomość poprzez
formularz
na stronie kontakt.
Parametry a także formę magnesu neodymowego zweryfikujesz w naszym
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MPL 30x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020142 |
| GTIN/EAN | 5906301811480 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.27 kg / 238.07 N |
| Indukcja magnetyczna ~ ? | 512.53 mT / 5125 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią bezpośredni efekt kalkulacji fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 30x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5124 Gs
512.4 mT
|
24.27 kg / 24270.0 g
238.1 N
|
miażdżący |
| 1 mm |
4730 Gs
473.0 mT
|
20.68 kg / 20685.0 g
202.9 N
|
miażdżący |
| 2 mm |
4335 Gs
433.5 mT
|
17.37 kg / 17370.7 g
170.4 N
|
miażdżący |
| 3 mm |
3950 Gs
395.0 mT
|
14.43 kg / 14425.2 g
141.5 N
|
miażdżący |
| 5 mm |
3240 Gs
324.0 mT
|
9.71 kg / 9706.2 g
95.2 N
|
mocny |
| 10 mm |
1923 Gs
192.3 mT
|
3.42 kg / 3417.4 g
33.5 N
|
mocny |
| 15 mm |
1163 Gs
116.3 mT
|
1.25 kg / 1250.2 g
12.3 N
|
słaby uchwyt |
| 20 mm |
736 Gs
73.6 mT
|
0.50 kg / 500.4 g
4.9 N
|
słaby uchwyt |
| 30 mm |
338 Gs
33.8 mT
|
0.11 kg / 105.3 g
1.0 N
|
słaby uchwyt |
| 50 mm |
106 Gs
10.6 mT
|
0.01 kg / 10.3 g
0.1 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 30x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.85 kg / 4854.0 g
47.6 N
|
| 1 mm | Stal (~0.2) |
4.14 kg / 4136.0 g
40.6 N
|
| 2 mm | Stal (~0.2) |
3.47 kg / 3474.0 g
34.1 N
|
| 3 mm | Stal (~0.2) |
2.89 kg / 2886.0 g
28.3 N
|
| 5 mm | Stal (~0.2) |
1.94 kg / 1942.0 g
19.1 N
|
| 10 mm | Stal (~0.2) |
0.68 kg / 684.0 g
6.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 250.0 g
2.5 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 100.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 30x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.28 kg / 7281.0 g
71.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.85 kg / 4854.0 g
47.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.43 kg / 2427.0 g
23.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.14 kg / 12135.0 g
119.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 30x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.21 kg / 1213.5 g
11.9 N
|
| 1 mm |
|
3.03 kg / 3033.8 g
29.8 N
|
| 2 mm |
|
6.07 kg / 6067.5 g
59.5 N
|
| 5 mm |
|
15.17 kg / 15168.8 g
148.8 N
|
| 10 mm |
|
24.27 kg / 24270.0 g
238.1 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 30x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.27 kg / 24270.0 g
238.1 N
|
OK |
| 40 °C | -2.2% |
23.74 kg / 23736.1 g
232.9 N
|
OK |
| 60 °C | -4.4% |
23.20 kg / 23202.1 g
227.6 N
|
OK |
| 80 °C | -6.6% |
22.67 kg / 22668.2 g
222.4 N
|
|
| 100 °C | -28.8% |
17.28 kg / 17280.2 g
169.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 30x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
97.11 kg / 97112 g
952.7 N
5 859 Gs
|
N/A |
| 1 mm |
89.88 kg / 89881 g
881.7 N
9 859 Gs
|
80.89 kg / 80893 g
793.6 N
~0 Gs
|
| 2 mm |
82.77 kg / 82767 g
811.9 N
9 461 Gs
|
74.49 kg / 74490 g
730.7 N
~0 Gs
|
| 3 mm |
75.96 kg / 75963 g
745.2 N
9 063 Gs
|
68.37 kg / 68367 g
670.7 N
~0 Gs
|
| 5 mm |
63.42 kg / 63419 g
622.1 N
8 281 Gs
|
57.08 kg / 57077 g
559.9 N
~0 Gs
|
| 10 mm |
38.84 kg / 38837 g
381.0 N
6 481 Gs
|
34.95 kg / 34954 g
342.9 N
~0 Gs
|
| 20 mm |
13.67 kg / 13674 g
134.1 N
3 845 Gs
|
12.31 kg / 12307 g
120.7 N
~0 Gs
|
| 50 mm |
0.88 kg / 880 g
8.6 N
976 Gs
|
0.79 kg / 792 g
7.8 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 30x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 30x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.96 km/h
(4.99 m/s)
|
1.12 J | |
| 30 mm |
28.76 km/h
(7.99 m/s)
|
2.87 J | |
| 50 mm |
37.04 km/h
(10.29 m/s)
|
4.76 J | |
| 100 mm |
52.37 km/h
(14.55 m/s)
|
9.52 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 30x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 30x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 30 878 Mx | 308.8 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 30x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.27 kg | Standard |
| Woda (dno rzeki) |
27.79 kg
(+3.52 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Ostrzeżenia
Produkt nie dla dzieci
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Niklowa powłoka a alergia
Część populacji posiada alergię kontaktową na nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może wywołać zaczerwienienie skóry. Zalecamy stosowanie rękawic bezlateksowych.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Nie lekceważ mocy
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Nie zbliżaj do komputera
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Ryzyko złamań
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
