MPL 30x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020142
GTIN/EAN: 5906301811480
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.27 kg / 238.07 N
Indukcja magnetyczna
512.53 mT / 5125 Gs
Powłoka
[NiCuNi] nikiel
43.22 ZŁ z VAT / szt. + cena za transport
35.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość przez
formularz
przez naszą stronę.
Masę oraz kształt magnesów neodymowych zweryfikujesz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 30x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 30x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020142 |
| GTIN/EAN | 5906301811480 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.27 kg / 238.07 N |
| Indukcja magnetyczna ~ ? | 512.53 mT / 5125 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Poniższe wartości stanowią rezultat symulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
MPL 30x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5124 Gs
512.4 mT
|
24.27 kg / 24270.0 g
238.1 N
|
krytyczny poziom |
| 1 mm |
4730 Gs
473.0 mT
|
20.68 kg / 20685.0 g
202.9 N
|
krytyczny poziom |
| 2 mm |
4335 Gs
433.5 mT
|
17.37 kg / 17370.7 g
170.4 N
|
krytyczny poziom |
| 3 mm |
3950 Gs
395.0 mT
|
14.43 kg / 14425.2 g
141.5 N
|
krytyczny poziom |
| 5 mm |
3240 Gs
324.0 mT
|
9.71 kg / 9706.2 g
95.2 N
|
uwaga |
| 10 mm |
1923 Gs
192.3 mT
|
3.42 kg / 3417.4 g
33.5 N
|
uwaga |
| 15 mm |
1163 Gs
116.3 mT
|
1.25 kg / 1250.2 g
12.3 N
|
bezpieczny |
| 20 mm |
736 Gs
73.6 mT
|
0.50 kg / 500.4 g
4.9 N
|
bezpieczny |
| 30 mm |
338 Gs
33.8 mT
|
0.11 kg / 105.3 g
1.0 N
|
bezpieczny |
| 50 mm |
106 Gs
10.6 mT
|
0.01 kg / 10.3 g
0.1 N
|
bezpieczny |
MPL 30x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.85 kg / 4854.0 g
47.6 N
|
| 1 mm | Stal (~0.2) |
4.14 kg / 4136.0 g
40.6 N
|
| 2 mm | Stal (~0.2) |
3.47 kg / 3474.0 g
34.1 N
|
| 3 mm | Stal (~0.2) |
2.89 kg / 2886.0 g
28.3 N
|
| 5 mm | Stal (~0.2) |
1.94 kg / 1942.0 g
19.1 N
|
| 10 mm | Stal (~0.2) |
0.68 kg / 684.0 g
6.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 250.0 g
2.5 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 100.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MPL 30x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.28 kg / 7281.0 g
71.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.85 kg / 4854.0 g
47.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.43 kg / 2427.0 g
23.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.14 kg / 12135.0 g
119.0 N
|
MPL 30x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.21 kg / 1213.5 g
11.9 N
|
| 1 mm |
|
3.03 kg / 3033.8 g
29.8 N
|
| 2 mm |
|
6.07 kg / 6067.5 g
59.5 N
|
| 5 mm |
|
15.17 kg / 15168.8 g
148.8 N
|
| 10 mm |
|
24.27 kg / 24270.0 g
238.1 N
|
MPL 30x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.27 kg / 24270.0 g
238.1 N
|
OK |
| 40 °C | -2.2% |
23.74 kg / 23736.1 g
232.9 N
|
OK |
| 60 °C | -4.4% |
23.20 kg / 23202.1 g
227.6 N
|
OK |
| 80 °C | -6.6% |
22.67 kg / 22668.2 g
222.4 N
|
|
| 100 °C | -28.8% |
17.28 kg / 17280.2 g
169.5 N
|
MPL 30x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
97.11 kg / 97112 g
952.7 N
5 859 Gs
|
N/A |
| 1 mm |
89.88 kg / 89881 g
881.7 N
9 859 Gs
|
80.89 kg / 80893 g
793.6 N
~0 Gs
|
| 2 mm |
82.77 kg / 82767 g
811.9 N
9 461 Gs
|
74.49 kg / 74490 g
730.7 N
~0 Gs
|
| 3 mm |
75.96 kg / 75963 g
745.2 N
9 063 Gs
|
68.37 kg / 68367 g
670.7 N
~0 Gs
|
| 5 mm |
63.42 kg / 63419 g
622.1 N
8 281 Gs
|
57.08 kg / 57077 g
559.9 N
~0 Gs
|
| 10 mm |
38.84 kg / 38837 g
381.0 N
6 481 Gs
|
34.95 kg / 34954 g
342.9 N
~0 Gs
|
| 20 mm |
13.67 kg / 13674 g
134.1 N
3 845 Gs
|
12.31 kg / 12307 g
120.7 N
~0 Gs
|
| 50 mm |
0.88 kg / 880 g
8.6 N
976 Gs
|
0.79 kg / 792 g
7.8 N
~0 Gs
|
MPL 30x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MPL 30x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.96 km/h
(4.99 m/s)
|
1.12 J | |
| 30 mm |
28.76 km/h
(7.99 m/s)
|
2.87 J | |
| 50 mm |
37.04 km/h
(10.29 m/s)
|
4.76 J | |
| 100 mm |
52.37 km/h
(14.55 m/s)
|
9.52 J |
MPL 30x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 30x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 30 878 Mx | 308.8 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
MPL 30x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.27 kg | Standard |
| Woda (dno rzeki) |
27.79 kg
(+3.52 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z wykorzystaniem podłoża ze stali niskowęglowej, działającej jako zwora magnetyczna
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Dystans (między magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – gorące środowisko osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Uszkodzenia czujników
Silne pole magnetyczne destabilizuje działanie czujników w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Niebezpieczeństwo dla rozruszników
Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować pracę implantu.
Zakaz zabawy
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Ryzyko pęknięcia
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Ryzyko pożaru
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Alergia na nikiel
Część populacji posiada nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może skutkować silną reakcję alergiczną. Rekomendujemy używanie rękawiczek ochronnych.
Uszkodzenia ciała
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Bezpieczny dystans
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
