MPL 30x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020141
GTIN/EAN: 5906301811473
Długość
30 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
45 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.53 kg / 191.55 N
Indukcja magnetyczna
371.57 mT / 3716 Gs
Powłoka
[NiCuNi] nikiel
16.11 ZŁ z VAT / szt. + cena za transport
13.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się przez
formularz
na stronie kontakt.
Masę oraz wygląd magnesów obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MPL 30x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020141 |
| GTIN/EAN | 5906301811473 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 45 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.53 kg / 191.55 N |
| Indukcja magnetyczna ~ ? | 371.57 mT / 3716 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Poniższe wartości są bezpośredni efekt analizy inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 30x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3715 Gs
371.5 mT
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
niebezpieczny! |
| 1 mm |
3464 Gs
346.4 mT
|
16.98 kg / 37.44 lbs
16983.1 g / 166.6 N
|
niebezpieczny! |
| 2 mm |
3197 Gs
319.7 mT
|
14.47 kg / 31.89 lbs
14466.6 g / 141.9 N
|
niebezpieczny! |
| 3 mm |
2927 Gs
292.7 mT
|
12.12 kg / 26.73 lbs
12123.3 g / 118.9 N
|
niebezpieczny! |
| 5 mm |
2408 Gs
240.8 mT
|
8.21 kg / 18.10 lbs
8207.8 g / 80.5 N
|
uwaga |
| 10 mm |
1411 Gs
141.1 mT
|
2.82 kg / 6.21 lbs
2815.6 g / 27.6 N
|
uwaga |
| 15 mm |
832 Gs
83.2 mT
|
0.98 kg / 2.16 lbs
979.7 g / 9.6 N
|
niskie ryzyko |
| 20 mm |
512 Gs
51.2 mT
|
0.37 kg / 0.82 lbs
371.2 g / 3.6 N
|
niskie ryzyko |
| 30 mm |
224 Gs
22.4 mT
|
0.07 kg / 0.16 lbs
70.7 g / 0.7 N
|
niskie ryzyko |
| 50 mm |
65 Gs
6.5 mT
|
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 30x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.91 kg / 8.61 lbs
3906.0 g / 38.3 N
|
| 1 mm | Stal (~0.2) |
3.40 kg / 7.49 lbs
3396.0 g / 33.3 N
|
| 2 mm | Stal (~0.2) |
2.89 kg / 6.38 lbs
2894.0 g / 28.4 N
|
| 3 mm | Stal (~0.2) |
2.42 kg / 5.34 lbs
2424.0 g / 23.8 N
|
| 5 mm | Stal (~0.2) |
1.64 kg / 3.62 lbs
1642.0 g / 16.1 N
|
| 10 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
564.0 g / 5.5 N
|
| 15 mm | Stal (~0.2) |
0.20 kg / 0.43 lbs
196.0 g / 1.9 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 30x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.86 kg / 12.92 lbs
5859.0 g / 57.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.91 kg / 8.61 lbs
3906.0 g / 38.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.95 kg / 4.31 lbs
1953.0 g / 19.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.77 kg / 21.53 lbs
9765.0 g / 95.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 30x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.98 kg / 2.15 lbs
976.5 g / 9.6 N
|
| 1 mm |
|
2.44 kg / 5.38 lbs
2441.3 g / 23.9 N
|
| 2 mm |
|
4.88 kg / 10.76 lbs
4882.5 g / 47.9 N
|
| 3 mm |
|
7.32 kg / 16.15 lbs
7323.8 g / 71.8 N
|
| 5 mm |
|
12.21 kg / 26.91 lbs
12206.3 g / 119.7 N
|
| 10 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
| 11 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
| 12 mm |
|
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 30x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.53 kg / 43.06 lbs
19530.0 g / 191.6 N
|
OK |
| 40 °C | -2.2% |
19.10 kg / 42.11 lbs
19100.3 g / 187.4 N
|
OK |
| 60 °C | -4.4% |
18.67 kg / 41.16 lbs
18670.7 g / 183.2 N
|
|
| 80 °C | -6.6% |
18.24 kg / 40.21 lbs
18241.0 g / 178.9 N
|
|
| 100 °C | -28.8% |
13.91 kg / 30.66 lbs
13905.4 g / 136.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 30x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
51.05 kg / 112.54 lbs
5 124 Gs
|
7.66 kg / 16.88 lbs
7657 g / 75.1 N
|
N/A |
| 1 mm |
47.76 kg / 105.28 lbs
7 186 Gs
|
7.16 kg / 15.79 lbs
7163 g / 70.3 N
|
42.98 kg / 94.76 lbs
~0 Gs
|
| 2 mm |
44.39 kg / 97.86 lbs
6 928 Gs
|
6.66 kg / 14.68 lbs
6658 g / 65.3 N
|
39.95 kg / 88.08 lbs
~0 Gs
|
| 3 mm |
41.06 kg / 90.52 lbs
6 663 Gs
|
6.16 kg / 13.58 lbs
6159 g / 60.4 N
|
36.95 kg / 81.47 lbs
~0 Gs
|
| 5 mm |
34.68 kg / 76.45 lbs
6 124 Gs
|
5.20 kg / 11.47 lbs
5202 g / 51.0 N
|
31.21 kg / 68.81 lbs
~0 Gs
|
| 10 mm |
21.45 kg / 47.30 lbs
4 817 Gs
|
3.22 kg / 7.09 lbs
3218 g / 31.6 N
|
19.31 kg / 42.57 lbs
~0 Gs
|
| 20 mm |
7.36 kg / 16.22 lbs
2 821 Gs
|
1.10 kg / 2.43 lbs
1104 g / 10.8 N
|
6.62 kg / 14.60 lbs
~0 Gs
|
| 50 mm |
0.40 kg / 0.89 lbs
662 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 60 mm |
0.18 kg / 0.41 lbs
447 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 70 mm |
0.09 kg / 0.20 lbs
314 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.11 lbs
228 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.06 lbs
170 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.03 lbs
130 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 30x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 30x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.82 km/h
(6.34 m/s)
|
0.90 J | |
| 30 mm |
36.47 km/h
(10.13 m/s)
|
2.31 J | |
| 50 mm |
46.99 km/h
(13.05 m/s)
|
3.83 J | |
| 100 mm |
66.44 km/h
(18.46 m/s)
|
7.66 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 30x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 30x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 801 Mx | 228.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.53 kg | Standard |
| Woda (dno rzeki) |
22.36 kg
(+2.83 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z zastosowaniem płyty ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- o przekroju nie mniejszej niż 10 mm
- o wypolerowanej powierzchni styku
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda płyta nie zamyka strumienia, przez co część strumienia ucieka na drugą stronę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig określano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla najmłodszych
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Moc przyciągania
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Trwała utrata siły
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Zagrożenie fizyczne
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa silne magnesy.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Interferencja medyczna
Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
