MPL 30x10x8 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020139
GTIN/EAN: 5906301811459
Długość
30 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
18 g
Kierunek magnesowania
↑ osiowy
Udźwig
12.13 kg / 119.04 N
Indukcja magnetyczna
427.56 mT / 4276 Gs
Powłoka
[NiCuNi] nikiel
10.71 ZŁ z VAT / szt. + cena za transport
8.71 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo skontaktuj się za pomocą
formularz zgłoszeniowy
na stronie kontakt.
Siłę oraz wygląd magnesu sprawdzisz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 30x10x8 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020139 |
| GTIN/EAN | 5906301811459 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 30 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 12.13 kg / 119.04 N |
| Indukcja magnetyczna ~ ? | 427.56 mT / 4276 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione dane stanowią wynik kalkulacji inżynierskiej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MPL 30x10x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4273 Gs
427.3 mT
|
12.13 kg / 12130.0 g
119.0 N
|
krytyczny poziom |
| 1 mm |
3683 Gs
368.3 mT
|
9.01 kg / 9009.7 g
88.4 N
|
mocny |
| 2 mm |
3109 Gs
310.9 mT
|
6.42 kg / 6419.9 g
63.0 N
|
mocny |
| 3 mm |
2600 Gs
260.0 mT
|
4.49 kg / 4488.7 g
44.0 N
|
mocny |
| 5 mm |
1818 Gs
181.8 mT
|
2.20 kg / 2195.3 g
21.5 N
|
mocny |
| 10 mm |
825 Gs
82.5 mT
|
0.45 kg / 452.4 g
4.4 N
|
bezpieczny |
| 15 mm |
431 Gs
43.1 mT
|
0.12 kg / 123.4 g
1.2 N
|
bezpieczny |
| 20 mm |
248 Gs
24.8 mT
|
0.04 kg / 41.0 g
0.4 N
|
bezpieczny |
| 30 mm |
101 Gs
10.1 mT
|
0.01 kg / 6.8 g
0.1 N
|
bezpieczny |
| 50 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.5 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 30x10x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.43 kg / 2426.0 g
23.8 N
|
| 1 mm | Stal (~0.2) |
1.80 kg / 1802.0 g
17.7 N
|
| 2 mm | Stal (~0.2) |
1.28 kg / 1284.0 g
12.6 N
|
| 3 mm | Stal (~0.2) |
0.90 kg / 898.0 g
8.8 N
|
| 5 mm | Stal (~0.2) |
0.44 kg / 440.0 g
4.3 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 30x10x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.64 kg / 3639.0 g
35.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.43 kg / 2426.0 g
23.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.21 kg / 1213.0 g
11.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.07 kg / 6065.0 g
59.5 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 30x10x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.61 kg / 606.5 g
5.9 N
|
| 1 mm |
|
1.52 kg / 1516.3 g
14.9 N
|
| 2 mm |
|
3.03 kg / 3032.5 g
29.7 N
|
| 5 mm |
|
7.58 kg / 7581.3 g
74.4 N
|
| 10 mm |
|
12.13 kg / 12130.0 g
119.0 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 30x10x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
12.13 kg / 12130.0 g
119.0 N
|
OK |
| 40 °C | -2.2% |
11.86 kg / 11863.1 g
116.4 N
|
OK |
| 60 °C | -4.4% |
11.60 kg / 11596.3 g
113.8 N
|
|
| 80 °C | -6.6% |
11.33 kg / 11329.4 g
111.1 N
|
|
| 100 °C | -28.8% |
8.64 kg / 8636.6 g
84.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 30x10x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
33.78 kg / 33776 g
331.3 N
5 382 Gs
|
N/A |
| 1 mm |
29.33 kg / 29328 g
287.7 N
7 964 Gs
|
26.39 kg / 26395 g
258.9 N
~0 Gs
|
| 2 mm |
25.09 kg / 25087 g
246.1 N
7 366 Gs
|
22.58 kg / 22578 g
221.5 N
~0 Gs
|
| 3 mm |
21.25 kg / 21252 g
208.5 N
6 780 Gs
|
19.13 kg / 19127 g
187.6 N
~0 Gs
|
| 5 mm |
14.97 kg / 14966 g
146.8 N
5 689 Gs
|
13.47 kg / 13469 g
132.1 N
~0 Gs
|
| 10 mm |
6.11 kg / 6113 g
60.0 N
3 636 Gs
|
5.50 kg / 5502 g
54.0 N
~0 Gs
|
| 20 mm |
1.26 kg / 1260 g
12.4 N
1 651 Gs
|
1.13 kg / 1134 g
11.1 N
~0 Gs
|
| 50 mm |
0.04 kg / 44 g
0.4 N
308 Gs
|
0.04 kg / 40 g
0.4 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 30x10x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 30x10x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.78 km/h
(7.44 m/s)
|
0.50 J | |
| 30 mm |
45.36 km/h
(12.60 m/s)
|
1.43 J | |
| 50 mm |
58.54 km/h
(16.26 m/s)
|
2.38 J | |
| 100 mm |
82.79 km/h
(23.00 m/s)
|
4.76 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 30x10x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 30x10x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 138 Mx | 121.4 µWb |
| Współczynnik Pc | 0.51 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 30x10x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 12.13 kg | Standard |
| Woda (dno rzeki) |
13.89 kg
(+1.76 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.51
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają estetyczny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- z zastosowaniem płyty ze miękkiej stali, działającej jako idealny przewodnik strumienia
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans (pomiędzy magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część mocy ucieka w powietrzu.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza udźwig.
BHP przy magnesach
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Bezpieczny dystans
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Niklowa powłoka a alergia
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ryzyko złamań
Silne magnesy mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Potężne pole
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Łatwopalność
Pył powstający podczas obróbki magnesów jest wybuchowy. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
