MPL 20x8x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020134
GTIN/EAN: 5906301811404
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
7.2 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.27 kg / 61.50 N
Indukcja magnetyczna
423.90 mT / 4239 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub pisz przez
formularz
na naszej stronie.
Masę a także wygląd elementów magnetycznych skontrolujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 20x8x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020134 |
| GTIN/EAN | 5906301811404 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 7.2 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.27 kg / 61.50 N |
| Indukcja magnetyczna ~ ? | 423.90 mT / 4239 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Poniższe wartości stanowią wynik kalkulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4236 Gs
423.6 mT
|
6.27 kg / 6270.0 g
61.5 N
|
mocny |
| 1 mm |
3505 Gs
350.5 mT
|
4.29 kg / 4293.5 g
42.1 N
|
mocny |
| 2 mm |
2814 Gs
281.4 mT
|
2.77 kg / 2766.9 g
27.1 N
|
mocny |
| 3 mm |
2235 Gs
223.5 mT
|
1.75 kg / 1745.9 g
17.1 N
|
bezpieczny |
| 5 mm |
1425 Gs
142.5 mT
|
0.71 kg / 709.0 g
7.0 N
|
bezpieczny |
| 10 mm |
540 Gs
54.0 mT
|
0.10 kg / 101.9 g
1.0 N
|
bezpieczny |
| 15 mm |
248 Gs
24.8 mT
|
0.02 kg / 21.5 g
0.2 N
|
bezpieczny |
| 20 mm |
131 Gs
13.1 mT
|
0.01 kg / 6.0 g
0.1 N
|
bezpieczny |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 0.8 g
0.0 N
|
bezpieczny |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.25 kg / 1254.0 g
12.3 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 858.0 g
8.4 N
|
| 2 mm | Stal (~0.2) |
0.55 kg / 554.0 g
5.4 N
|
| 3 mm | Stal (~0.2) |
0.35 kg / 350.0 g
3.4 N
|
| 5 mm | Stal (~0.2) |
0.14 kg / 142.0 g
1.4 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.88 kg / 1881.0 g
18.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.25 kg / 1254.0 g
12.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.63 kg / 627.0 g
6.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.14 kg / 3135.0 g
30.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.63 kg / 627.0 g
6.2 N
|
| 1 mm |
|
1.57 kg / 1567.5 g
15.4 N
|
| 2 mm |
|
3.14 kg / 3135.0 g
30.8 N
|
| 5 mm |
|
6.27 kg / 6270.0 g
61.5 N
|
| 10 mm |
|
6.27 kg / 6270.0 g
61.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.27 kg / 6270.0 g
61.5 N
|
OK |
| 40 °C | -2.2% |
6.13 kg / 6132.1 g
60.2 N
|
OK |
| 60 °C | -4.4% |
5.99 kg / 5994.1 g
58.8 N
|
|
| 80 °C | -6.6% |
5.86 kg / 5856.2 g
57.4 N
|
|
| 100 °C | -28.8% |
4.46 kg / 4464.2 g
43.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.70 kg / 17701 g
173.7 N
5 386 Gs
|
N/A |
| 1 mm |
14.82 kg / 14815 g
145.3 N
7 751 Gs
|
13.33 kg / 13334 g
130.8 N
~0 Gs
|
| 2 mm |
12.12 kg / 12121 g
118.9 N
7 011 Gs
|
10.91 kg / 10909 g
107.0 N
~0 Gs
|
| 3 mm |
9.78 kg / 9776 g
95.9 N
6 296 Gs
|
8.80 kg / 8799 g
86.3 N
~0 Gs
|
| 5 mm |
6.21 kg / 6210 g
60.9 N
5 018 Gs
|
5.59 kg / 5589 g
54.8 N
~0 Gs
|
| 10 mm |
2.00 kg / 2002 g
19.6 N
2 849 Gs
|
1.80 kg / 1802 g
17.7 N
~0 Gs
|
| 20 mm |
0.29 kg / 288 g
2.8 N
1 080 Gs
|
0.26 kg / 259 g
2.5 N
~0 Gs
|
| 50 mm |
0.01 kg / 6 g
0.1 N
153 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.06 km/h
(8.35 m/s)
|
0.25 J | |
| 30 mm |
51.55 km/h
(14.32 m/s)
|
0.74 J | |
| 50 mm |
66.55 km/h
(18.49 m/s)
|
1.23 J | |
| 100 mm |
94.11 km/h
(26.14 m/s)
|
2.46 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 558 Mx | 65.6 µWb |
| Współczynnik Pc | 0.52 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.27 kg | Standard |
| Woda (dno rzeki) |
7.18 kg
(+0.91 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.52
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- przy całkowitym braku odstępu (bez powłok)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Masywność podłoża – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
BHP przy magnesach
Dla uczulonych
Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może wywołać silną reakcję alergiczną. Rekomendujemy noszenie rękawic bezlateksowych.
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Bezpieczna praca
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Zakłócenia GPS i telefonów
Silne pole magnetyczne destabilizuje funkcjonowanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Ostrzeżenie dla sercowców
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
To nie jest zabawka
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Rozprysk materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Zagrożenie dla elektroniki
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Samozapłon
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
