Magnesy neodymowe: siła, której szukasz

Chcesz kupić naprawdę silne magnesy? Oferujemy kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do użytku w domu, warsztatu oraz modelarstwa. Przejrzyj asortyment w naszym magazynie.

poznaj katalog magnesów

Sprzęt dla poszukiwaczy skarbów

Rozpocznij przygodę polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w każdej wodzie.

znajdź swój magnes do wody

Mocowania magnetyczne dla przemysłu

Profesjonalne rozwiązania do montażu bezinwazyjnego. Uchwyty z gwintem (M8, M10, M12) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Idealnie nadają się przy instalacji oświetlenia, sensorów oraz reklam.

sprawdź dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 20x5x5 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020132

GTIN/EAN: 5906301811381

5.00

Długość

20 mm [±0,1 mm]

Szerokość

5 mm [±0,1 mm]

Wysokość

5 mm [±0,1 mm]

Waga

3.75 g

Kierunek magnesowania

↑ osiowy

Udźwig

4.42 kg / 43.32 N

Indukcja magnetyczna

456.78 mT / 4568 Gs

Powłoka

[NiCuNi] nikiel

2.76 z VAT / szt. + cena za transport

2.24 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
2.24 ZŁ
2.76 ZŁ
cena od 300 szt.
2.11 ZŁ
2.59 ZŁ
cena od 1150 szt.
1.971 ZŁ
2.42 ZŁ
Nie wiesz co wybrać?

Zadzwoń do nas +48 888 99 98 98 ewentualnie zostaw wiadomość przez formularz kontaktowy na stronie kontaktowej.
Siłę a także formę magnesów skontrolujesz dzięki naszemu modułowym kalkulatorze.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Specyfikacja - MPL 20x5x5 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 20x5x5 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020132
GTIN/EAN 5906301811381
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 20 mm [±0,1 mm]
Szerokość 5 mm [±0,1 mm]
Wysokość 5 mm [±0,1 mm]
Waga 3.75 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 4.42 kg / 43.32 N
Indukcja magnetyczna ~ ? 456.78 mT / 4568 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 20x5x5 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza inżynierska magnesu - raport

Niniejsze wartości stanowią bezpośredni efekt symulacji matematycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 20x5x5 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 4563 Gs
456.3 mT
4.42 kg / 4420.0 g
43.4 N
mocny
1 mm 3323 Gs
332.3 mT
2.34 kg / 2344.7 g
23.0 N
mocny
2 mm 2341 Gs
234.1 mT
1.16 kg / 1163.0 g
11.4 N
niskie ryzyko
3 mm 1678 Gs
167.8 mT
0.60 kg / 597.4 g
5.9 N
niskie ryzyko
5 mm 944 Gs
94.4 mT
0.19 kg / 189.2 g
1.9 N
niskie ryzyko
10 mm 320 Gs
32.0 mT
0.02 kg / 21.7 g
0.2 N
niskie ryzyko
15 mm 141 Gs
14.1 mT
0.00 kg / 4.2 g
0.0 N
niskie ryzyko
20 mm 73 Gs
7.3 mT
0.00 kg / 1.1 g
0.0 N
niskie ryzyko
30 mm 26 Gs
2.6 mT
0.00 kg / 0.1 g
0.0 N
niskie ryzyko
50 mm 7 Gs
0.7 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko

Tabela 2: Równoległa siła ześlizgu (pion)
MPL 20x5x5 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.88 kg / 884.0 g
8.7 N
1 mm Stal (~0.2) 0.47 kg / 468.0 g
4.6 N
2 mm Stal (~0.2) 0.23 kg / 232.0 g
2.3 N
3 mm Stal (~0.2) 0.12 kg / 120.0 g
1.2 N
5 mm Stal (~0.2) 0.04 kg / 38.0 g
0.4 N
10 mm Stal (~0.2) 0.00 kg / 4.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 20x5x5 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
1.33 kg / 1326.0 g
13.0 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.88 kg / 884.0 g
8.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.44 kg / 442.0 g
4.3 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
2.21 kg / 2210.0 g
21.7 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 20x5x5 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.44 kg / 442.0 g
4.3 N
1 mm
25%
1.11 kg / 1105.0 g
10.8 N
2 mm
50%
2.21 kg / 2210.0 g
21.7 N
5 mm
100%
4.42 kg / 4420.0 g
43.4 N
10 mm
100%
4.42 kg / 4420.0 g
43.4 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 20x5x5 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 4.42 kg / 4420.0 g
43.4 N
OK
40 °C -2.2% 4.32 kg / 4322.8 g
42.4 N
OK
60 °C -4.4% 4.23 kg / 4225.5 g
41.5 N
80 °C -6.6% 4.13 kg / 4128.3 g
40.5 N
100 °C -28.8% 3.15 kg / 3147.0 g
30.9 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 20x5x5 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 12.84 kg / 12836 g
125.9 N
5 504 Gs
N/A
1 mm 9.53 kg / 9532 g
93.5 N
7 864 Gs
8.58 kg / 8579 g
84.2 N
~0 Gs
2 mm 6.81 kg / 6809 g
66.8 N
6 647 Gs
6.13 kg / 6128 g
60.1 N
~0 Gs
3 mm 4.79 kg / 4794 g
47.0 N
5 577 Gs
4.31 kg / 4314 g
42.3 N
~0 Gs
5 mm 2.40 kg / 2403 g
23.6 N
3 949 Gs
2.16 kg / 2163 g
21.2 N
~0 Gs
10 mm 0.55 kg / 549 g
5.4 N
1 888 Gs
0.49 kg / 494 g
4.9 N
~0 Gs
20 mm 0.06 kg / 63 g
0.6 N
640 Gs
0.06 kg / 57 g
0.6 N
~0 Gs
50 mm 0.00 kg / 1 g
0.0 N
84 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 20x5x5 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 6.0 cm
Implant słuchowy 10 Gs (1.0 mT) 4.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.5 cm
Urządzenie mobilne 40 Gs (4.0 mT) 3.0 cm
Pilot do auta 50 Gs (5.0 mT) 2.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 20x5x5 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 34.73 km/h
(9.65 m/s)
0.17 J
30 mm 59.97 km/h
(16.66 m/s)
0.52 J
50 mm 77.42 km/h
(21.51 m/s)
0.87 J
100 mm 109.49 km/h
(30.41 m/s)
1.73 J

Tabela 9: Trwałość powłoki antykorozyjnej
MPL 20x5x5 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x5x5 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 4 204 Mx 42.0 µWb
Współczynnik Pc 0.54 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MPL 20x5x5 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 4.42 kg Standard
Woda (dno rzeki) 5.06 kg
(+0.64 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Ześlizg (ściana)

*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły prostopadłej.

2. Wpływ grubości blachy

*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020132-2025
Przelicznik magnesów
Siła oderwania

Moc pola

Zobacz też inne produkty

Komponent MPL 20x5x5 / N38 cechuje się niskim profilem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Ten blok magnetyczny o sile 43.32 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Kluczem do sukcesu jest zsuniecie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Uważaj na palce! Magnesy o sile 4.42 kg potrafią bardzo mocno uszczypnąć i spowodować krwiaki. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Magnesy płytkowe MPL 20x5x5 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak separatory magnetyczne oraz silniki liniowe. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Klienci często wybierają ten model do organizacji warsztatu na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Do montażu magnesów płaskich MPL 20x5x5 / N38 najlepiej używać kleje dwuskładnikowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (20x5 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 20x5x5 mm, co przy wadze 3.75 g czyni go elementem o wysokiej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 4.42 kg (siła ~43.32 N), co przy tak płaskim kształcie świadczy o dużej mocy materiału. Produkt spełnia normy dla magnesów klasy N38.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Zalety

Oprócz potężną siłą, magnesy typu NdFeB oferują szereg innych zalet::
  • Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
  • Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
  • Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
  • Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
  • Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.

Ograniczenia

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
  • Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.

Charakterystyka udźwigu

Wytrzymałość magnetyczna na maksimum – co się na to składa?

Informacja o udźwigu została wyznaczona dla warunków idealnego styku, zakładającej:
  • z wykorzystaniem płyty ze miękkiej stali, działającej jako zwora magnetyczna
  • posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
  • o idealnie gładkiej powierzchni styku
  • w warunkach braku dystansu (metal do metalu)
  • podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
  • przy temperaturze otoczenia pokojowej

Praktyczne aspekty udźwigu – czynniki

Podczas codziennego użytkowania, faktyczna siła trzymania jest determinowana przez kilku kluczowych aspektów, wymienionych od kluczowych:
  • Szczelina – obecność ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
  • Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
  • Materiał blachy – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają właściwości magnetyczne i udźwig.
  • Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
  • Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.

Udźwig mierzono z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.

Ostrzeżenia
Rozruszniki serca

Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.

Temperatura pracy

Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.

Karty i dyski

Potężne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.

Ryzyko uczulenia

Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może skutkować wysypkę. Zalecamy używanie rękawic bezlateksowych.

Ostrożność wymagana

Stosuj magnesy z rozwagą. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.

Tylko dla dorosłych

Neodymowe magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.

Łamliwość magnesów

Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.

Siła zgniatająca

Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.

Pył jest łatwopalny

Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.

Elektronika precyzyjna

Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.

Zagrożenie! Dowiedz się więcej o zagrożeniach w artykule: Bezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98