MPL 20x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020132
GTIN/EAN: 5906301811381
Długość
20 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
3.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.42 kg / 43.32 N
Indukcja magnetyczna
456.78 mT / 4568 Gs
Powłoka
[NiCuNi] nikiel
2.76 ZŁ z VAT / szt. + cena za transport
2.24 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie daj znać przez
formularz zapytania
przez naszą stronę.
Siłę a także wygląd elementów magnetycznych skontrolujesz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 20x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 20x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020132 |
| GTIN/EAN | 5906301811381 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 3.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.42 kg / 43.32 N |
| Indukcja magnetyczna ~ ? | 456.78 mT / 4568 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Niniejsze wartości stanowią rezultat analizy matematycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
MPL 20x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4563 Gs
456.3 mT
|
4.42 kg / 4420.0 g
43.4 N
|
mocny |
| 1 mm |
3323 Gs
332.3 mT
|
2.34 kg / 2344.7 g
23.0 N
|
mocny |
| 2 mm |
2341 Gs
234.1 mT
|
1.16 kg / 1163.0 g
11.4 N
|
niskie ryzyko |
| 3 mm |
1678 Gs
167.8 mT
|
0.60 kg / 597.4 g
5.9 N
|
niskie ryzyko |
| 5 mm |
944 Gs
94.4 mT
|
0.19 kg / 189.2 g
1.9 N
|
niskie ryzyko |
| 10 mm |
320 Gs
32.0 mT
|
0.02 kg / 21.7 g
0.2 N
|
niskie ryzyko |
| 15 mm |
141 Gs
14.1 mT
|
0.00 kg / 4.2 g
0.0 N
|
niskie ryzyko |
| 20 mm |
73 Gs
7.3 mT
|
0.00 kg / 1.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 20x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.88 kg / 884.0 g
8.7 N
|
| 1 mm | Stal (~0.2) |
0.47 kg / 468.0 g
4.6 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 232.0 g
2.3 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 120.0 g
1.2 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 20x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.33 kg / 1326.0 g
13.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.88 kg / 884.0 g
8.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.44 kg / 442.0 g
4.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.21 kg / 2210.0 g
21.7 N
|
MPL 20x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.44 kg / 442.0 g
4.3 N
|
| 1 mm |
|
1.11 kg / 1105.0 g
10.8 N
|
| 2 mm |
|
2.21 kg / 2210.0 g
21.7 N
|
| 5 mm |
|
4.42 kg / 4420.0 g
43.4 N
|
| 10 mm |
|
4.42 kg / 4420.0 g
43.4 N
|
MPL 20x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.42 kg / 4420.0 g
43.4 N
|
OK |
| 40 °C | -2.2% |
4.32 kg / 4322.8 g
42.4 N
|
OK |
| 60 °C | -4.4% |
4.23 kg / 4225.5 g
41.5 N
|
|
| 80 °C | -6.6% |
4.13 kg / 4128.3 g
40.5 N
|
|
| 100 °C | -28.8% |
3.15 kg / 3147.0 g
30.9 N
|
MPL 20x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.84 kg / 12836 g
125.9 N
5 504 Gs
|
N/A |
| 1 mm |
9.53 kg / 9532 g
93.5 N
7 864 Gs
|
8.58 kg / 8579 g
84.2 N
~0 Gs
|
| 2 mm |
6.81 kg / 6809 g
66.8 N
6 647 Gs
|
6.13 kg / 6128 g
60.1 N
~0 Gs
|
| 3 mm |
4.79 kg / 4794 g
47.0 N
5 577 Gs
|
4.31 kg / 4314 g
42.3 N
~0 Gs
|
| 5 mm |
2.40 kg / 2403 g
23.6 N
3 949 Gs
|
2.16 kg / 2163 g
21.2 N
~0 Gs
|
| 10 mm |
0.55 kg / 549 g
5.4 N
1 888 Gs
|
0.49 kg / 494 g
4.9 N
~0 Gs
|
| 20 mm |
0.06 kg / 63 g
0.6 N
640 Gs
|
0.06 kg / 57 g
0.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
84 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 20x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 20x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.73 km/h
(9.65 m/s)
|
0.17 J | |
| 30 mm |
59.97 km/h
(16.66 m/s)
|
0.52 J | |
| 50 mm |
77.42 km/h
(21.51 m/s)
|
0.87 J | |
| 100 mm |
109.49 km/h
(30.41 m/s)
|
1.73 J |
MPL 20x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 20x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 204 Mx | 42.0 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
MPL 20x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.42 kg | Standard |
| Woda (dno rzeki) |
5.06 kg
(+0.64 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z użyciem podłoża ze stali o wysokiej przenikalności, która służy jako element zamykający obwód
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość blachy – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Wpływ na smartfony
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Dla uczulonych
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Ochrona oczu
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ochrona urządzeń
Potężne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Tylko dla dorosłych
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
