MPL 20x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020132
GTIN/EAN: 5906301811381
Długość
20 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
3.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.42 kg / 43.32 N
Indukcja magnetyczna
456.78 mT / 4568 Gs
Powłoka
[NiCuNi] nikiel
2.76 ZŁ z VAT / szt. + cena za transport
2.24 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz kontaktowy
na stronie kontaktowej.
Siłę i budowę magnesów neodymowych zobaczysz w naszym
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 20x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020132 |
| GTIN/EAN | 5906301811381 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 3.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.42 kg / 43.32 N |
| Indukcja magnetyczna ~ ? | 456.78 mT / 4568 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Przedstawione wartości są wynik analizy matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MPL 20x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4563 Gs
456.3 mT
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
uwaga |
| 1 mm |
3323 Gs
332.3 mT
|
2.34 kg / 5.17 lbs
2344.7 g / 23.0 N
|
uwaga |
| 2 mm |
2341 Gs
234.1 mT
|
1.16 kg / 2.56 lbs
1163.0 g / 11.4 N
|
słaby uchwyt |
| 3 mm |
1678 Gs
167.8 mT
|
0.60 kg / 1.32 lbs
597.4 g / 5.9 N
|
słaby uchwyt |
| 5 mm |
944 Gs
94.4 mT
|
0.19 kg / 0.42 lbs
189.2 g / 1.9 N
|
słaby uchwyt |
| 10 mm |
320 Gs
32.0 mT
|
0.02 kg / 0.05 lbs
21.7 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
141 Gs
14.1 mT
|
0.00 kg / 0.01 lbs
4.2 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 20x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.88 kg / 1.95 lbs
884.0 g / 8.7 N
|
| 1 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
468.0 g / 4.6 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 20x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.33 kg / 2.92 lbs
1326.0 g / 13.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.88 kg / 1.95 lbs
884.0 g / 8.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 20x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.44 kg / 0.97 lbs
442.0 g / 4.3 N
|
| 1 mm |
|
1.11 kg / 2.44 lbs
1105.0 g / 10.8 N
|
| 2 mm |
|
2.21 kg / 4.87 lbs
2210.0 g / 21.7 N
|
| 3 mm |
|
3.32 kg / 7.31 lbs
3315.0 g / 32.5 N
|
| 5 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
| 10 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
| 11 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
| 12 mm |
|
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 20x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.42 kg / 9.74 lbs
4420.0 g / 43.4 N
|
OK |
| 40 °C | -2.2% |
4.32 kg / 9.53 lbs
4322.8 g / 42.4 N
|
OK |
| 60 °C | -4.4% |
4.23 kg / 9.32 lbs
4225.5 g / 41.5 N
|
|
| 80 °C | -6.6% |
4.13 kg / 9.10 lbs
4128.3 g / 40.5 N
|
|
| 100 °C | -28.8% |
3.15 kg / 6.94 lbs
3147.0 g / 30.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 20x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.84 kg / 28.30 lbs
5 504 Gs
|
1.93 kg / 4.24 lbs
1925 g / 18.9 N
|
N/A |
| 1 mm |
9.53 kg / 21.01 lbs
7 864 Gs
|
1.43 kg / 3.15 lbs
1430 g / 14.0 N
|
8.58 kg / 18.91 lbs
~0 Gs
|
| 2 mm |
6.81 kg / 15.01 lbs
6 647 Gs
|
1.02 kg / 2.25 lbs
1021 g / 10.0 N
|
6.13 kg / 13.51 lbs
~0 Gs
|
| 3 mm |
4.79 kg / 10.57 lbs
5 577 Gs
|
0.72 kg / 1.59 lbs
719 g / 7.1 N
|
4.31 kg / 9.51 lbs
~0 Gs
|
| 5 mm |
2.40 kg / 5.30 lbs
3 949 Gs
|
0.36 kg / 0.79 lbs
360 g / 3.5 N
|
2.16 kg / 4.77 lbs
~0 Gs
|
| 10 mm |
0.55 kg / 1.21 lbs
1 888 Gs
|
0.08 kg / 0.18 lbs
82 g / 0.8 N
|
0.49 kg / 1.09 lbs
~0 Gs
|
| 20 mm |
0.06 kg / 0.14 lbs
640 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 20x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 20x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.73 km/h
(9.65 m/s)
|
0.17 J | |
| 30 mm |
59.97 km/h
(16.66 m/s)
|
0.52 J | |
| 50 mm |
77.42 km/h
(21.51 m/s)
|
0.87 J | |
| 100 mm |
109.49 km/h
(30.41 m/s)
|
1.73 J |
Tabela 9: Odporność na korozję
MPL 20x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 20x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 204 Mx | 42.0 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 20x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.42 kg | Standard |
| Woda (dno rzeki) |
5.06 kg
(+0.64 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi zaledwie ~1% (wg testów).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną idealnie równą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Bezpieczna praca
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Uczulenie na powłokę
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Ochrona dłoni
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Uwaga na odpryski
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Niszczenie danych
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Zakaz obróbki
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
