MPL 20x5x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020131
GTIN/EAN: 5906301811374
Długość
20 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.46 kg / 33.96 N
Indukcja magnetyczna
358.88 mT / 3589 Gs
Powłoka
[NiCuNi] nikiel
1.058 ZŁ z VAT / szt. + cena za transport
0.860 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie napisz korzystając z
nasz formularz online
na stronie kontaktowej.
Siłę a także kształt elementów magnetycznych wyliczysz u nas w
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MPL 20x5x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x5x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020131 |
| GTIN/EAN | 5906301811374 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.46 kg / 33.96 N |
| Indukcja magnetyczna ~ ? | 358.88 mT / 3589 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Niniejsze informacje stanowią wynik analizy matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 20x5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3585 Gs
358.5 mT
|
3.46 kg / 3460.0 g
33.9 N
|
uwaga |
| 1 mm |
2619 Gs
261.9 mT
|
1.85 kg / 1846.6 g
18.1 N
|
bezpieczny |
| 2 mm |
1818 Gs
181.8 mT
|
0.89 kg / 889.8 g
8.7 N
|
bezpieczny |
| 3 mm |
1279 Gs
127.9 mT
|
0.44 kg / 440.2 g
4.3 N
|
bezpieczny |
| 5 mm |
696 Gs
69.6 mT
|
0.13 kg / 130.6 g
1.3 N
|
bezpieczny |
| 10 mm |
225 Gs
22.5 mT
|
0.01 kg / 13.6 g
0.1 N
|
bezpieczny |
| 15 mm |
97 Gs
9.7 mT
|
0.00 kg / 2.5 g
0.0 N
|
bezpieczny |
| 20 mm |
49 Gs
4.9 mT
|
0.00 kg / 0.6 g
0.0 N
|
bezpieczny |
| 30 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 20x5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 692.0 g
6.8 N
|
| 1 mm | Stal (~0.2) |
0.37 kg / 370.0 g
3.6 N
|
| 2 mm | Stal (~0.2) |
0.18 kg / 178.0 g
1.7 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 88.0 g
0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 20x5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 1038.0 g
10.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 692.0 g
6.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 346.0 g
3.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 1730.0 g
17.0 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 20x5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 346.0 g
3.4 N
|
| 1 mm |
|
0.87 kg / 865.0 g
8.5 N
|
| 2 mm |
|
1.73 kg / 1730.0 g
17.0 N
|
| 5 mm |
|
3.46 kg / 3460.0 g
33.9 N
|
| 10 mm |
|
3.46 kg / 3460.0 g
33.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 20x5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.46 kg / 3460.0 g
33.9 N
|
OK |
| 40 °C | -2.2% |
3.38 kg / 3383.9 g
33.2 N
|
OK |
| 60 °C | -4.4% |
3.31 kg / 3307.8 g
32.4 N
|
|
| 80 °C | -6.6% |
3.23 kg / 3231.6 g
31.7 N
|
|
| 100 °C | -28.8% |
2.46 kg / 2463.5 g
24.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 20x5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
7.92 kg / 7924 g
77.7 N
4 860 Gs
|
N/A |
| 1 mm |
5.94 kg / 5942 g
58.3 N
6 209 Gs
|
5.35 kg / 5348 g
52.5 N
~0 Gs
|
| 2 mm |
4.23 kg / 4229 g
41.5 N
5 238 Gs
|
3.81 kg / 3806 g
37.3 N
~0 Gs
|
| 3 mm |
2.94 kg / 2942 g
28.9 N
4 369 Gs
|
2.65 kg / 2647 g
26.0 N
~0 Gs
|
| 5 mm |
1.42 kg / 1423 g
14.0 N
3 039 Gs
|
1.28 kg / 1281 g
12.6 N
~0 Gs
|
| 10 mm |
0.30 kg / 299 g
2.9 N
1 393 Gs
|
0.27 kg / 269 g
2.6 N
~0 Gs
|
| 20 mm |
0.03 kg / 31 g
0.3 N
450 Gs
|
0.03 kg / 28 g
0.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
56 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 20x5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 20x5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
39.65 km/h
(11.01 m/s)
|
0.14 J | |
| 30 mm |
68.50 km/h
(19.03 m/s)
|
0.41 J | |
| 50 mm |
88.43 km/h
(24.56 m/s)
|
0.68 J | |
| 100 mm |
125.06 km/h
(34.74 m/s)
|
1.36 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 20x5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 197 Mx | 32.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 20x5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.46 kg | Standard |
| Woda (dno rzeki) |
3.96 kg
(+0.50 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią wolną od rys
- przy zerowej szczelinie (brak farby)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Dystans (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Nie dawać dzieciom
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Zakłócenia GPS i telefonów
Silne pole magnetyczne destabilizuje działanie czujników w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Ochrona urządzeń
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Urazy ciała
Bloki magnetyczne mogą połamać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Obróbka mechaniczna
Proszek generowany podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Bezpieczna praca
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
