MPL 20x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020129
GTIN/EAN: 5906301811350
Długość
20 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
60 g
Kierunek magnesowania
↑ osiowy
Udźwig
15.40 kg / 151.12 N
Indukcja magnetyczna
540.22 mT / 5402 Gs
Powłoka
[NiCuNi] nikiel
33.21 ZŁ z VAT / szt. + cena za transport
27.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość korzystając z
formularz kontaktowy
na stronie kontaktowej.
Siłę a także wygląd elementów magnetycznych wyliczysz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 20x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020129 |
| GTIN/EAN | 5906301811350 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 60 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 15.40 kg / 151.12 N |
| Indukcja magnetyczna ~ ? | 540.22 mT / 5402 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze dane stanowią rezultat analizy matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 20x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5400 Gs
540.0 mT
|
15.40 kg / 15400.0 g
151.1 N
|
miażdżący |
| 1 mm |
4910 Gs
491.0 mT
|
12.73 kg / 12732.2 g
124.9 N
|
miażdżący |
| 2 mm |
4423 Gs
442.3 mT
|
10.33 kg / 10328.3 g
101.3 N
|
miażdżący |
| 3 mm |
3955 Gs
395.5 mT
|
8.26 kg / 8258.3 g
81.0 N
|
uwaga |
| 5 mm |
3114 Gs
311.4 mT
|
5.12 kg / 5120.3 g
50.2 N
|
uwaga |
| 10 mm |
1671 Gs
167.1 mT
|
1.48 kg / 1475.0 g
14.5 N
|
słaby uchwyt |
| 15 mm |
936 Gs
93.6 mT
|
0.46 kg / 463.0 g
4.5 N
|
słaby uchwyt |
| 20 mm |
562 Gs
56.2 mT
|
0.17 kg / 167.1 g
1.6 N
|
słaby uchwyt |
| 30 mm |
244 Gs
24.4 mT
|
0.03 kg / 31.3 g
0.3 N
|
słaby uchwyt |
| 50 mm |
73 Gs
7.3 mT
|
0.00 kg / 2.8 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 20x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.08 kg / 3080.0 g
30.2 N
|
| 1 mm | Stal (~0.2) |
2.55 kg / 2546.0 g
25.0 N
|
| 2 mm | Stal (~0.2) |
2.07 kg / 2066.0 g
20.3 N
|
| 3 mm | Stal (~0.2) |
1.65 kg / 1652.0 g
16.2 N
|
| 5 mm | Stal (~0.2) |
1.02 kg / 1024.0 g
10.0 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 296.0 g
2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 92.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 20x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.62 kg / 4620.0 g
45.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.08 kg / 3080.0 g
30.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.54 kg / 1540.0 g
15.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.70 kg / 7700.0 g
75.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 20x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 770.0 g
7.6 N
|
| 1 mm |
|
1.93 kg / 1925.0 g
18.9 N
|
| 2 mm |
|
3.85 kg / 3850.0 g
37.8 N
|
| 5 mm |
|
9.63 kg / 9625.0 g
94.4 N
|
| 10 mm |
|
15.40 kg / 15400.0 g
151.1 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 20x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
15.40 kg / 15400.0 g
151.1 N
|
OK |
| 40 °C | -2.2% |
15.06 kg / 15061.2 g
147.8 N
|
OK |
| 60 °C | -4.4% |
14.72 kg / 14722.4 g
144.4 N
|
OK |
| 80 °C | -6.6% |
14.38 kg / 14383.6 g
141.1 N
|
|
| 100 °C | -28.8% |
10.96 kg / 10964.8 g
107.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 20x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
71.92 kg / 71917 g
705.5 N
5 962 Gs
|
N/A |
| 1 mm |
65.60 kg / 65602 g
643.6 N
10 316 Gs
|
59.04 kg / 59042 g
579.2 N
~0 Gs
|
| 2 mm |
59.46 kg / 59458 g
583.3 N
9 821 Gs
|
53.51 kg / 53513 g
525.0 N
~0 Gs
|
| 3 mm |
53.66 kg / 53658 g
526.4 N
9 329 Gs
|
48.29 kg / 48293 g
473.8 N
~0 Gs
|
| 5 mm |
43.20 kg / 43199 g
423.8 N
8 371 Gs
|
38.88 kg / 38879 g
381.4 N
~0 Gs
|
| 10 mm |
23.91 kg / 23912 g
234.6 N
6 228 Gs
|
21.52 kg / 21520 g
211.1 N
~0 Gs
|
| 20 mm |
6.89 kg / 6888 g
67.6 N
3 343 Gs
|
6.20 kg / 6199 g
60.8 N
~0 Gs
|
| 50 mm |
0.32 kg / 320 g
3.1 N
721 Gs
|
0.29 kg / 288 g
2.8 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 20x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.10 km/h
(4.75 m/s)
|
0.68 J | |
| 30 mm |
28.02 km/h
(7.78 m/s)
|
1.82 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
3.02 J | |
| 100 mm |
51.09 km/h
(14.19 m/s)
|
6.04 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 20x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 20x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 017 Mx | 220.2 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 20x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 15.40 kg | Standard |
| Woda (dno rzeki) |
17.63 kg
(+2.23 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną wolną od rys
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – występowanie ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – zbyt cienka blacha nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Łatwopalność
Proszek powstający podczas obróbki magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Kompas i GPS
Silne pole magnetyczne zakłóca działanie czujników w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Dla uczulonych
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
To nie jest zabawka
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Wpływ na zdrowie
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Poważne obrażenia
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
