MPL 20x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020129
GTIN: 5906301811350
Długość
20 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
60 g
Kierunek magnesowania
↑ osiowy
Udźwig
15.40 kg / 151.12 N
Indukcja magnetyczna
540.22 mT / 5402 Gs
Powłoka
[NiCuNi] nikiel
33.21 ZŁ z VAT / szt. + cena za transport
27.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Zadzwoń do nas
+48 22 499 98 98
lub pisz poprzez
formularz zgłoszeniowy
przez naszą stronę.
Moc a także wygląd magnesów neodymowych zobaczysz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 20x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 20x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020129 |
| GTIN | 5906301811350 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 60 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 15.40 kg / 151.12 N |
| Indukcja magnetyczna ~ ? | 540.22 mT / 5402 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Poniższe informacje są wynik analizy inżynierskiej. Wartości oparte są na algorytmach dla materiału NdFeB. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
MPL 20x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5400 Gs
540.0 mT
|
15.40 kg / 15400.0 g
151.1 N
|
miażdżący |
| 1 mm |
4910 Gs
491.0 mT
|
12.73 kg / 12732.2 g
124.9 N
|
miażdżący |
| 2 mm |
4423 Gs
442.3 mT
|
10.33 kg / 10328.3 g
101.3 N
|
miażdżący |
| 3 mm |
3955 Gs
395.5 mT
|
8.26 kg / 8258.3 g
81.0 N
|
mocny |
| 5 mm |
3114 Gs
311.4 mT
|
5.12 kg / 5120.3 g
50.2 N
|
mocny |
| 10 mm |
1671 Gs
167.1 mT
|
1.48 kg / 1475.0 g
14.5 N
|
niskie ryzyko |
| 15 mm |
936 Gs
93.6 mT
|
0.46 kg / 463.0 g
4.5 N
|
niskie ryzyko |
| 20 mm |
562 Gs
56.2 mT
|
0.17 kg / 167.1 g
1.6 N
|
niskie ryzyko |
| 30 mm |
244 Gs
24.4 mT
|
0.03 kg / 31.3 g
0.3 N
|
niskie ryzyko |
| 50 mm |
73 Gs
7.3 mT
|
0.00 kg / 2.8 g
0.0 N
|
niskie ryzyko |
MPL 20x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.08 kg / 3080.0 g
30.2 N
|
| 1 mm | Stal (~0.2) |
2.55 kg / 2546.0 g
25.0 N
|
| 2 mm | Stal (~0.2) |
2.07 kg / 2066.0 g
20.3 N
|
| 3 mm | Stal (~0.2) |
1.65 kg / 1652.0 g
16.2 N
|
| 5 mm | Stal (~0.2) |
1.02 kg / 1024.0 g
10.0 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 296.0 g
2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 92.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 20x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.62 kg / 4620.0 g
45.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.08 kg / 3080.0 g
30.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.54 kg / 1540.0 g
15.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.70 kg / 7700.0 g
75.5 N
|
MPL 20x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 770.0 g
7.6 N
|
| 1 mm |
|
1.93 kg / 1925.0 g
18.9 N
|
| 2 mm |
|
3.85 kg / 3850.0 g
37.8 N
|
| 5 mm |
|
9.63 kg / 9625.0 g
94.4 N
|
| 10 mm |
|
15.40 kg / 15400.0 g
151.1 N
|
MPL 20x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
15.40 kg / 15400.0 g
151.1 N
|
OK |
| 40 °C | -2.2% |
15.06 kg / 15061.2 g
147.8 N
|
OK |
| 60 °C | -4.4% |
14.72 kg / 14722.4 g
144.4 N
|
OK |
| 80 °C | -6.6% |
14.38 kg / 14383.6 g
141.1 N
|
|
| 100 °C | -28.8% |
10.96 kg / 10964.8 g
107.6 N
|
MPL 20x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
71.92 kg / 71917 g
705.5 N
5 962 Gs
|
N/A |
| 1 mm |
65.60 kg / 65602 g
643.6 N
10 316 Gs
|
59.04 kg / 59042 g
579.2 N
~0 Gs
|
| 2 mm |
59.46 kg / 59458 g
583.3 N
9 821 Gs
|
53.51 kg / 53513 g
525.0 N
~0 Gs
|
| 3 mm |
53.66 kg / 53658 g
526.4 N
9 329 Gs
|
48.29 kg / 48293 g
473.8 N
~0 Gs
|
| 5 mm |
43.20 kg / 43199 g
423.8 N
8 371 Gs
|
38.88 kg / 38879 g
381.4 N
~0 Gs
|
| 10 mm |
23.91 kg / 23912 g
234.6 N
6 228 Gs
|
21.52 kg / 21520 g
211.1 N
~0 Gs
|
| 20 mm |
6.89 kg / 6888 g
67.6 N
3 343 Gs
|
6.20 kg / 6199 g
60.8 N
~0 Gs
|
| 50 mm |
0.32 kg / 320 g
3.1 N
721 Gs
|
0.29 kg / 288 g
2.8 N
~0 Gs
|
MPL 20x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MPL 20x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.10 km/h
(4.75 m/s)
|
0.68 J | |
| 30 mm |
28.02 km/h
(7.78 m/s)
|
1.82 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
3.02 J | |
| 100 mm |
51.09 km/h
(14.19 m/s)
|
6.04 J |
MPL 20x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 20x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 017 Mx | 220.2 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
MPL 20x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 15.40 kg | Standard |
| Woda (dno rzeki) |
17.63 kg
(+2.23 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne propozycje
Wady oraz zalety magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok wysokiej siły, produkty te cechują się następującymi zaletami:
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi jedynie ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Najwyższa nośność magnesu – co się na to składa?
Deklarowana siła magnesu odnosi się do maksymalnych osiągów, zarejestrowanej w środowisku optymalnym, czyli:
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
Podczas codziennego użytkowania, realna moc wynika z wielu zmiennych, które przedstawiamy od kluczowych:
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Masywność podłoża – za chuda płyta nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
* Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Wady oraz zalety magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok wysokiej siły, produkty te cechują się następującymi zaletami:
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi jedynie ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Najwyższa nośność magnesu – co się na to składa?
Deklarowana siła magnesu odnosi się do maksymalnych osiągów, zarejestrowanej w środowisku optymalnym, czyli:
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
Podczas codziennego użytkowania, realna moc wynika z wielu zmiennych, które przedstawiamy od kluczowych:
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Masywność podłoża – za chuda płyta nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
* Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Rozruszniki serca
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Uczulenie na powłokę
Niektóre osoby ma uczulenie na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Rekomendujemy stosowanie rękawiczek ochronnych.
Zagrożenie dla nawigacji
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Zagrożenie dla najmłodszych
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj z dala od niepowołanych osób.
Kruchy spiek
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Zagrożenie!
Dowiedz się więcej o zagrożeniach w artykule: Bezpieczeństwo pracy z magnesami.
