MPL 20x20x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020129
GTIN/EAN: 5906301811350
Długość
20 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
60 g
Kierunek magnesowania
↑ osiowy
Udźwig
15.40 kg / 151.12 N
Indukcja magnetyczna
540.22 mT / 5402 Gs
Powłoka
[NiCuNi] nikiel
33.21 ZŁ z VAT / szt. + cena za transport
27.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
lub zostaw wiadomość za pomocą
formularz kontaktowy
na naszej stronie.
Siłę a także kształt elementów magnetycznych skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 20x20x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x20x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020129 |
| GTIN/EAN | 5906301811350 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 60 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 15.40 kg / 151.12 N |
| Indukcja magnetyczna ~ ? | 540.22 mT / 5402 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Poniższe wartości są bezpośredni efekt kalkulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 20x20x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5400 Gs
540.0 mT
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
krytyczny poziom |
| 1 mm |
4910 Gs
491.0 mT
|
12.73 kg / 28.07 lbs
12732.2 g / 124.9 N
|
krytyczny poziom |
| 2 mm |
4423 Gs
442.3 mT
|
10.33 kg / 22.77 lbs
10328.3 g / 101.3 N
|
krytyczny poziom |
| 3 mm |
3955 Gs
395.5 mT
|
8.26 kg / 18.21 lbs
8258.3 g / 81.0 N
|
uwaga |
| 5 mm |
3114 Gs
311.4 mT
|
5.12 kg / 11.29 lbs
5120.3 g / 50.2 N
|
uwaga |
| 10 mm |
1671 Gs
167.1 mT
|
1.48 kg / 3.25 lbs
1475.0 g / 14.5 N
|
bezpieczny |
| 15 mm |
936 Gs
93.6 mT
|
0.46 kg / 1.02 lbs
463.0 g / 4.5 N
|
bezpieczny |
| 20 mm |
562 Gs
56.2 mT
|
0.17 kg / 0.37 lbs
167.1 g / 1.6 N
|
bezpieczny |
| 30 mm |
244 Gs
24.4 mT
|
0.03 kg / 0.07 lbs
31.3 g / 0.3 N
|
bezpieczny |
| 50 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 20x20x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.08 kg / 6.79 lbs
3080.0 g / 30.2 N
|
| 1 mm | Stal (~0.2) |
2.55 kg / 5.61 lbs
2546.0 g / 25.0 N
|
| 2 mm | Stal (~0.2) |
2.07 kg / 4.55 lbs
2066.0 g / 20.3 N
|
| 3 mm | Stal (~0.2) |
1.65 kg / 3.64 lbs
1652.0 g / 16.2 N
|
| 5 mm | Stal (~0.2) |
1.02 kg / 2.26 lbs
1024.0 g / 10.0 N
|
| 10 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 20x20x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.62 kg / 10.19 lbs
4620.0 g / 45.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.08 kg / 6.79 lbs
3080.0 g / 30.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.70 kg / 16.98 lbs
7700.0 g / 75.5 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 20x20x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.70 lbs
770.0 g / 7.6 N
|
| 1 mm |
|
1.93 kg / 4.24 lbs
1925.0 g / 18.9 N
|
| 2 mm |
|
3.85 kg / 8.49 lbs
3850.0 g / 37.8 N
|
| 3 mm |
|
5.78 kg / 12.73 lbs
5775.0 g / 56.7 N
|
| 5 mm |
|
9.63 kg / 21.22 lbs
9625.0 g / 94.4 N
|
| 10 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
| 11 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
| 12 mm |
|
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 20x20x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
15.40 kg / 33.95 lbs
15400.0 g / 151.1 N
|
OK |
| 40 °C | -2.2% |
15.06 kg / 33.20 lbs
15061.2 g / 147.8 N
|
OK |
| 60 °C | -4.4% |
14.72 kg / 32.46 lbs
14722.4 g / 144.4 N
|
OK |
| 80 °C | -6.6% |
14.38 kg / 31.71 lbs
14383.6 g / 141.1 N
|
|
| 100 °C | -28.8% |
10.96 kg / 24.17 lbs
10964.8 g / 107.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 20x20x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.92 kg / 158.55 lbs
5 962 Gs
|
10.79 kg / 23.78 lbs
10787 g / 105.8 N
|
N/A |
| 1 mm |
65.60 kg / 144.63 lbs
10 316 Gs
|
9.84 kg / 21.69 lbs
9840 g / 96.5 N
|
59.04 kg / 130.16 lbs
~0 Gs
|
| 2 mm |
59.46 kg / 131.08 lbs
9 821 Gs
|
8.92 kg / 19.66 lbs
8919 g / 87.5 N
|
53.51 kg / 117.97 lbs
~0 Gs
|
| 3 mm |
53.66 kg / 118.30 lbs
9 329 Gs
|
8.05 kg / 17.74 lbs
8049 g / 79.0 N
|
48.29 kg / 106.47 lbs
~0 Gs
|
| 5 mm |
43.20 kg / 95.24 lbs
8 371 Gs
|
6.48 kg / 14.29 lbs
6480 g / 63.6 N
|
38.88 kg / 85.71 lbs
~0 Gs
|
| 10 mm |
23.91 kg / 52.72 lbs
6 228 Gs
|
3.59 kg / 7.91 lbs
3587 g / 35.2 N
|
21.52 kg / 47.44 lbs
~0 Gs
|
| 20 mm |
6.89 kg / 15.19 lbs
3 343 Gs
|
1.03 kg / 2.28 lbs
1033 g / 10.1 N
|
6.20 kg / 13.67 lbs
~0 Gs
|
| 50 mm |
0.32 kg / 0.71 lbs
721 Gs
|
0.05 kg / 0.11 lbs
48 g / 0.5 N
|
0.29 kg / 0.64 lbs
~0 Gs
|
| 60 mm |
0.15 kg / 0.32 lbs
487 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.16 lbs
344 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.09 lbs
251 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
189 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
146 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 20x20x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x20x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.10 km/h
(4.75 m/s)
|
0.68 J | |
| 30 mm |
28.02 km/h
(7.78 m/s)
|
1.82 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
3.02 J | |
| 100 mm |
51.09 km/h
(14.19 m/s)
|
6.04 J |
Tabela 9: Odporność na korozję
MPL 20x20x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x20x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 017 Mx | 220.2 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 20x20x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 15.40 kg | Standard |
| Woda (dno rzeki) |
17.63 kg
(+2.23 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (metal do metalu)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Kompas i GPS
Silne pole magnetyczne destabilizuje działanie magnetometrów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zagrożenie wybuchem pyłu
Proszek powstający podczas szlifowania magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uwaga: zadławienie
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj z dala od dzieci i zwierząt.
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Uszkodzenia ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Niklowa powłoka a alergia
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Siła neodymu
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
