MPL 20x10x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020127
GTIN/EAN: 5906301811336
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
3 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.88 kg / 18.44 N
Indukcja magnetyczna
168.24 mT / 1682 Gs
Powłoka
[NiCuNi] nikiel
1.538 ZŁ z VAT / szt. + cena za transport
1.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz zapytania
na stronie kontakt.
Moc i formę magnesów sprawdzisz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MPL 20x10x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020127 |
| GTIN/EAN | 5906301811336 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.88 kg / 18.44 N |
| Indukcja magnetyczna ~ ? | 168.24 mT / 1682 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Niniejsze informacje są bezpośredni efekt kalkulacji inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 20x10x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1682 Gs
168.2 mT
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
słaby uchwyt |
| 1 mm |
1524 Gs
152.4 mT
|
1.54 kg / 3.40 lbs
1544.3 g / 15.1 N
|
słaby uchwyt |
| 2 mm |
1316 Gs
131.6 mT
|
1.15 kg / 2.54 lbs
1150.1 g / 11.3 N
|
słaby uchwyt |
| 3 mm |
1101 Gs
110.1 mT
|
0.81 kg / 1.78 lbs
806.0 g / 7.9 N
|
słaby uchwyt |
| 5 mm |
744 Gs
74.4 mT
|
0.37 kg / 0.81 lbs
367.6 g / 3.6 N
|
słaby uchwyt |
| 10 mm |
288 Gs
28.8 mT
|
0.06 kg / 0.12 lbs
55.1 g / 0.5 N
|
słaby uchwyt |
| 15 mm |
129 Gs
12.9 mT
|
0.01 kg / 0.02 lbs
11.1 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
66 Gs
6.6 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 20x10x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.31 kg / 0.68 lbs
308.0 g / 3.0 N
|
| 2 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 0.36 lbs
162.0 g / 1.6 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 20x10x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.56 kg / 1.24 lbs
564.0 g / 5.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 20x10x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 1 mm |
|
0.47 kg / 1.04 lbs
470.0 g / 4.6 N
|
| 2 mm |
|
0.94 kg / 2.07 lbs
940.0 g / 9.2 N
|
| 3 mm |
|
1.41 kg / 3.11 lbs
1410.0 g / 13.8 N
|
| 5 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 10 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 11 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 12 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 20x10x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
OK |
| 40 °C | -2.2% |
1.84 kg / 4.05 lbs
1838.6 g / 18.0 N
|
OK |
| 60 °C | -4.4% |
1.80 kg / 3.96 lbs
1797.3 g / 17.6 N
|
|
| 80 °C | -6.6% |
1.76 kg / 3.87 lbs
1755.9 g / 17.2 N
|
|
| 100 °C | -28.8% |
1.34 kg / 2.95 lbs
1338.6 g / 13.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 20x10x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.49 kg / 7.69 lbs
2 995 Gs
|
0.52 kg / 1.15 lbs
523 g / 5.1 N
|
N/A |
| 1 mm |
3.21 kg / 7.08 lbs
3 227 Gs
|
0.48 kg / 1.06 lbs
481 g / 4.7 N
|
2.89 kg / 6.37 lbs
~0 Gs
|
| 2 mm |
2.87 kg / 6.32 lbs
3 049 Gs
|
0.43 kg / 0.95 lbs
430 g / 4.2 N
|
2.58 kg / 5.69 lbs
~0 Gs
|
| 3 mm |
2.50 kg / 5.51 lbs
2 846 Gs
|
0.37 kg / 0.83 lbs
375 g / 3.7 N
|
2.25 kg / 4.95 lbs
~0 Gs
|
| 5 mm |
1.80 kg / 3.96 lbs
2 414 Gs
|
0.27 kg / 0.59 lbs
269 g / 2.6 N
|
1.62 kg / 3.56 lbs
~0 Gs
|
| 10 mm |
0.68 kg / 1.50 lbs
1 487 Gs
|
0.10 kg / 0.23 lbs
102 g / 1.0 N
|
0.61 kg / 1.35 lbs
~0 Gs
|
| 20 mm |
0.10 kg / 0.23 lbs
576 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
76 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 20x10x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x10x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.70 km/h
(7.14 m/s)
|
0.08 J | |
| 30 mm |
43.73 km/h
(12.15 m/s)
|
0.22 J | |
| 50 mm |
56.45 km/h
(15.68 m/s)
|
0.37 J | |
| 100 mm |
79.84 km/h
(22.18 m/s)
|
0.74 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 20x10x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 20x10x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 825 Mx | 38.2 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 20x10x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.88 kg | Standard |
| Woda (dno rzeki) |
2.15 kg
(+0.27 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem blachy ze stali niskowęglowej, która służy jako element zamykający obwód
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig określano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą obniża nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Uszkodzenia ciała
Silne magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Kruchość materiału
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Utrata mocy w cieple
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Karty i dyski
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od niepowołanych osób.
Obróbka mechaniczna
Pył powstający podczas szlifowania magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
