MPL 200x30x30 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020125
GTIN/EAN: 5906301811312
Długość
200 mm [±0,1 mm]
Szerokość
30 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
1350 g
Kierunek magnesowania
↑ osiowy
Udźwig
287.38 kg / 2819.19 N
Indukcja magnetyczna
445.15 mT / 4451 Gs
Powłoka
[NiCuNi] nikiel
563.28 ZŁ z VAT / szt. + cena za transport
457.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie zostaw wiadomość przez
formularz
na stronie kontakt.
Właściwości oraz wygląd magnesów neodymowych przetestujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 200x30x30 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 200x30x30 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020125 |
| GTIN/EAN | 5906301811312 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 200 mm [±0,1 mm] |
| Szerokość | 30 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 1350 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 287.38 kg / 2819.19 N |
| Indukcja magnetyczna ~ ? | 445.15 mT / 4451 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Poniższe wartości stanowią rezultat analizy inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 200x30x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4451 Gs
445.1 mT
|
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
niebezpieczny! |
| 1 mm |
4241 Gs
424.1 mT
|
260.91 kg / 575.21 lbs
260910.0 g / 2559.5 N
|
niebezpieczny! |
| 2 mm |
4028 Gs
402.8 mT
|
235.43 kg / 519.04 lbs
235433.0 g / 2309.6 N
|
niebezpieczny! |
| 3 mm |
3818 Gs
381.8 mT
|
211.49 kg / 466.26 lbs
211490.2 g / 2074.7 N
|
niebezpieczny! |
| 5 mm |
3412 Gs
341.2 mT
|
168.87 kg / 372.30 lbs
168870.4 g / 1656.6 N
|
niebezpieczny! |
| 10 mm |
2539 Gs
253.9 mT
|
93.54 kg / 206.22 lbs
93539.2 g / 917.6 N
|
niebezpieczny! |
| 15 mm |
1902 Gs
190.2 mT
|
52.48 kg / 115.70 lbs
52481.2 g / 514.8 N
|
niebezpieczny! |
| 20 mm |
1457 Gs
145.7 mT
|
30.79 kg / 67.88 lbs
30789.8 g / 302.0 N
|
niebezpieczny! |
| 30 mm |
920 Gs
92.0 mT
|
12.29 kg / 27.09 lbs
12288.2 g / 120.5 N
|
niebezpieczny! |
| 50 mm |
456 Gs
45.6 mT
|
3.02 kg / 6.65 lbs
3016.4 g / 29.6 N
|
mocny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 200x30x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
57.48 kg / 126.71 lbs
57476.0 g / 563.8 N
|
| 1 mm | Stal (~0.2) |
52.18 kg / 115.04 lbs
52182.0 g / 511.9 N
|
| 2 mm | Stal (~0.2) |
47.09 kg / 103.81 lbs
47086.0 g / 461.9 N
|
| 3 mm | Stal (~0.2) |
42.30 kg / 93.25 lbs
42298.0 g / 414.9 N
|
| 5 mm | Stal (~0.2) |
33.77 kg / 74.46 lbs
33774.0 g / 331.3 N
|
| 10 mm | Stal (~0.2) |
18.71 kg / 41.24 lbs
18708.0 g / 183.5 N
|
| 15 mm | Stal (~0.2) |
10.50 kg / 23.14 lbs
10496.0 g / 103.0 N
|
| 20 mm | Stal (~0.2) |
6.16 kg / 13.58 lbs
6158.0 g / 60.4 N
|
| 30 mm | Stal (~0.2) |
2.46 kg / 5.42 lbs
2458.0 g / 24.1 N
|
| 50 mm | Stal (~0.2) |
0.60 kg / 1.33 lbs
604.0 g / 5.9 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 200x30x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
86.21 kg / 190.07 lbs
86214.0 g / 845.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
57.48 kg / 126.71 lbs
57476.0 g / 563.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
28.74 kg / 63.36 lbs
28738.0 g / 281.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
143.69 kg / 316.78 lbs
143690.0 g / 1409.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 200x30x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
9.58 kg / 21.12 lbs
9579.3 g / 94.0 N
|
| 1 mm |
|
23.95 kg / 52.80 lbs
23948.3 g / 234.9 N
|
| 2 mm |
|
47.90 kg / 105.59 lbs
47896.7 g / 469.9 N
|
| 3 mm |
|
71.85 kg / 158.39 lbs
71845.0 g / 704.8 N
|
| 5 mm |
|
119.74 kg / 263.98 lbs
119741.7 g / 1174.7 N
|
| 10 mm |
|
239.48 kg / 527.97 lbs
239483.3 g / 2349.3 N
|
| 11 mm |
|
263.43 kg / 580.77 lbs
263431.7 g / 2584.3 N
|
| 12 mm |
|
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 200x30x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
287.38 kg / 633.56 lbs
287380.0 g / 2819.2 N
|
OK |
| 40 °C | -2.2% |
281.06 kg / 619.63 lbs
281057.6 g / 2757.2 N
|
OK |
| 60 °C | -4.4% |
274.74 kg / 605.69 lbs
274735.3 g / 2695.2 N
|
|
| 80 °C | -6.6% |
268.41 kg / 591.75 lbs
268412.9 g / 2633.1 N
|
|
| 100 °C | -28.8% |
204.61 kg / 451.10 lbs
204614.6 g / 2007.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 200x30x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
732.71 kg / 1615.35 lbs
5 371 Gs
|
109.91 kg / 242.30 lbs
109907 g / 1078.2 N
|
N/A |
| 1 mm |
698.96 kg / 1540.95 lbs
8 694 Gs
|
104.84 kg / 231.14 lbs
104845 g / 1028.5 N
|
629.07 kg / 1386.85 lbs
~0 Gs
|
| 2 mm |
665.22 kg / 1466.57 lbs
8 481 Gs
|
99.78 kg / 219.99 lbs
99784 g / 978.9 N
|
598.70 kg / 1319.91 lbs
~0 Gs
|
| 3 mm |
632.29 kg / 1393.97 lbs
8 269 Gs
|
94.84 kg / 209.10 lbs
94844 g / 930.4 N
|
569.07 kg / 1254.57 lbs
~0 Gs
|
| 5 mm |
569.22 kg / 1254.92 lbs
7 846 Gs
|
85.38 kg / 188.24 lbs
85383 g / 837.6 N
|
512.30 kg / 1129.42 lbs
~0 Gs
|
| 10 mm |
430.56 kg / 949.22 lbs
6 823 Gs
|
64.58 kg / 142.38 lbs
64584 g / 633.6 N
|
387.50 kg / 854.29 lbs
~0 Gs
|
| 20 mm |
238.49 kg / 525.78 lbs
5 078 Gs
|
35.77 kg / 78.87 lbs
35774 g / 350.9 N
|
214.64 kg / 473.20 lbs
~0 Gs
|
| 50 mm |
48.45 kg / 106.82 lbs
2 289 Gs
|
7.27 kg / 16.02 lbs
7268 g / 71.3 N
|
43.61 kg / 96.13 lbs
~0 Gs
|
| 60 mm |
31.33 kg / 69.07 lbs
1 841 Gs
|
4.70 kg / 10.36 lbs
4700 g / 46.1 N
|
28.20 kg / 62.16 lbs
~0 Gs
|
| 70 mm |
21.09 kg / 46.49 lbs
1 510 Gs
|
3.16 kg / 6.97 lbs
3163 g / 31.0 N
|
18.98 kg / 41.84 lbs
~0 Gs
|
| 80 mm |
14.67 kg / 32.35 lbs
1 260 Gs
|
2.20 kg / 4.85 lbs
2201 g / 21.6 N
|
13.21 kg / 29.12 lbs
~0 Gs
|
| 90 mm |
10.50 kg / 23.15 lbs
1 066 Gs
|
1.58 kg / 3.47 lbs
1575 g / 15.5 N
|
9.45 kg / 20.83 lbs
~0 Gs
|
| 100 mm |
7.69 kg / 16.95 lbs
912 Gs
|
1.15 kg / 2.54 lbs
1154 g / 11.3 N
|
6.92 kg / 15.26 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 200x30x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 39.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 30.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 23.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 18.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 16.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 200x30x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
15.86 J | |
| 30 mm |
26.16 km/h
(7.27 m/s)
|
35.64 J | |
| 50 mm |
33.12 km/h
(9.20 m/s)
|
57.12 J | |
| 100 mm |
46.56 km/h
(12.93 m/s)
|
112.90 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 200x30x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 200x30x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 221 734 Mx | 2217.3 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 200x30x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 287.38 kg | Standard |
| Woda (dno rzeki) |
329.05 kg
(+41.67 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, Au, Ag) mają estetyczny, błyszczący wygląd.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem płyty ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Odstęp (między magnesem a blachą), ponieważ nawet niewielka przerwa (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda blacha nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Bezpieczna praca z magnesami neodymowymi
Uczulenie na powłokę
Część populacji ma alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Sugerujemy noszenie rękawic bezlateksowych.
Moc przyciągania
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Chronić przed dziećmi
Silne magnesy to nie zabawki. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Ryzyko pęknięcia
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Implanty medyczne
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
Ryzyko złamań
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Interferencja magnetyczna
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ryzyko pożaru
Proszek generowany podczas szlifowania magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Niszczenie danych
Bardzo silne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
