MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020117
GTIN/EAN: 5906301811237
Długość
12.5 mm [±0,1 mm]
Szerokość
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
5.86 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.84 kg / 47.51 N
Indukcja magnetyczna
360.91 mT / 3609 Gs
Powłoka
[NiCuNi] nikiel
2.83 ZŁ z VAT / szt. + cena za transport
2.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość korzystając z
formularz zgłoszeniowy
przez naszą stronę.
Właściwości i formę elementów magnetycznych zobaczysz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 12.5x12.5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020117 |
| GTIN/EAN | 5906301811237 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 12.5 mm [±0,1 mm] |
| Szerokość | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 5.86 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.84 kg / 47.51 N |
| Indukcja magnetyczna ~ ? | 360.91 mT / 3609 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe informacje stanowią wynik kalkulacji fizycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 12.5x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3608 Gs
360.8 mT
|
4.84 kg / 4840.0 g
47.5 N
|
mocny |
| 1 mm |
3156 Gs
315.6 mT
|
3.70 kg / 3704.2 g
36.3 N
|
mocny |
| 2 mm |
2671 Gs
267.1 mT
|
2.65 kg / 2653.8 g
26.0 N
|
mocny |
| 3 mm |
2211 Gs
221.1 mT
|
1.82 kg / 1817.7 g
17.8 N
|
bezpieczny |
| 5 mm |
1464 Gs
146.4 mT
|
0.80 kg / 797.6 g
7.8 N
|
bezpieczny |
| 10 mm |
538 Gs
53.8 mT
|
0.11 kg / 107.6 g
1.1 N
|
bezpieczny |
| 15 mm |
234 Gs
23.4 mT
|
0.02 kg / 20.4 g
0.2 N
|
bezpieczny |
| 20 mm |
119 Gs
11.9 mT
|
0.01 kg / 5.3 g
0.1 N
|
bezpieczny |
| 30 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.7 g
0.0 N
|
bezpieczny |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 12.5x12.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.97 kg / 968.0 g
9.5 N
|
| 1 mm | Stal (~0.2) |
0.74 kg / 740.0 g
7.3 N
|
| 2 mm | Stal (~0.2) |
0.53 kg / 530.0 g
5.2 N
|
| 3 mm | Stal (~0.2) |
0.36 kg / 364.0 g
3.6 N
|
| 5 mm | Stal (~0.2) |
0.16 kg / 160.0 g
1.6 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 12.5x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.45 kg / 1452.0 g
14.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.97 kg / 968.0 g
9.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 484.0 g
4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.42 kg / 2420.0 g
23.7 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 12.5x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 484.0 g
4.7 N
|
| 1 mm |
|
1.21 kg / 1210.0 g
11.9 N
|
| 2 mm |
|
2.42 kg / 2420.0 g
23.7 N
|
| 5 mm |
|
4.84 kg / 4840.0 g
47.5 N
|
| 10 mm |
|
4.84 kg / 4840.0 g
47.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 12.5x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.84 kg / 4840.0 g
47.5 N
|
OK |
| 40 °C | -2.2% |
4.73 kg / 4733.5 g
46.4 N
|
OK |
| 60 °C | -4.4% |
4.63 kg / 4627.0 g
45.4 N
|
|
| 80 °C | -6.6% |
4.52 kg / 4520.6 g
44.3 N
|
|
| 100 °C | -28.8% |
3.45 kg / 3446.1 g
33.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 12.5x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.54 kg / 12536 g
123.0 N
5 069 Gs
|
N/A |
| 1 mm |
11.08 kg / 11080 g
108.7 N
6 783 Gs
|
9.97 kg / 9972 g
97.8 N
~0 Gs
|
| 2 mm |
9.59 kg / 9594 g
94.1 N
6 312 Gs
|
8.63 kg / 8635 g
84.7 N
~0 Gs
|
| 3 mm |
8.18 kg / 8176 g
80.2 N
5 827 Gs
|
7.36 kg / 7359 g
72.2 N
~0 Gs
|
| 5 mm |
5.71 kg / 5714 g
56.1 N
4 871 Gs
|
5.14 kg / 5143 g
50.5 N
~0 Gs
|
| 10 mm |
2.07 kg / 2066 g
20.3 N
2 929 Gs
|
1.86 kg / 1859 g
18.2 N
~0 Gs
|
| 20 mm |
0.28 kg / 279 g
2.7 N
1 076 Gs
|
0.25 kg / 251 g
2.5 N
~0 Gs
|
| 50 mm |
0.00 kg / 4 g
0.0 N
136 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 12.5x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 12.5x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.38 km/h
(8.16 m/s)
|
0.20 J | |
| 30 mm |
50.21 km/h
(13.95 m/s)
|
0.57 J | |
| 50 mm |
64.81 km/h
(18.00 m/s)
|
0.95 J | |
| 100 mm |
91.65 km/h
(25.46 m/s)
|
1.90 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 12.5x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 12.5x12.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 874 Mx | 58.7 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 12.5x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.84 kg | Standard |
| Woda (dno rzeki) |
5.54 kg
(+0.70 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki powłoce (NiCuNi, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- o szlifowanej powierzchni kontaktu
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Determinanty praktycznego udźwigu magnesu
- Dystans – występowanie jakiejkolwiek warstwy (farba, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Produkt nie dla dzieci
Zawsze zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Samozapłon
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Maksymalna temperatura
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Elektronika precyzyjna
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Zasady obsługi
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
Niszczenie danych
Potężne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Niklowa powłoka a alergia
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Kruchość materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
