MPL 100x40x20 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020109
GTIN/EAN: 5906301811152
Długość
100 mm [±0,1 mm]
Szerokość
40 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
600 g
Kierunek magnesowania
↑ osiowy
Udźwig
120.01 kg / 1177.33 N
Indukcja magnetyczna
337.24 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
335.30 ZŁ z VAT / szt. + cena za transport
272.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
lub daj znać przez
formularz zgłoszeniowy
na naszej stronie.
Moc i kształt magnesu sprawdzisz w naszym
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MPL 100x40x20 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 100x40x20 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020109 |
| GTIN/EAN | 5906301811152 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 100 mm [±0,1 mm] |
| Szerokość | 40 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 600 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 120.01 kg / 1177.33 N |
| Indukcja magnetyczna ~ ? | 337.24 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Przedstawione wartości stanowią wynik analizy matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 100x40x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3372 Gs
337.2 mT
|
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
miażdżący |
| 1 mm |
3268 Gs
326.8 mT
|
112.70 kg / 248.45 lbs
112695.4 g / 1105.5 N
|
miażdżący |
| 2 mm |
3158 Gs
315.8 mT
|
105.27 kg / 232.09 lbs
105272.6 g / 1032.7 N
|
miażdżący |
| 3 mm |
3046 Gs
304.6 mT
|
97.92 kg / 215.88 lbs
97921.3 g / 960.6 N
|
miażdżący |
| 5 mm |
2818 Gs
281.8 mT
|
83.78 kg / 184.71 lbs
83783.3 g / 821.9 N
|
miażdżący |
| 10 mm |
2266 Gs
226.6 mT
|
54.17 kg / 119.43 lbs
54174.5 g / 531.5 N
|
miażdżący |
| 15 mm |
1794 Gs
179.4 mT
|
33.96 kg / 74.86 lbs
33955.7 g / 333.1 N
|
miażdżący |
| 20 mm |
1419 Gs
141.9 mT
|
21.25 kg / 46.84 lbs
21248.1 g / 208.4 N
|
miażdżący |
| 30 mm |
908 Gs
90.8 mT
|
8.70 kg / 19.17 lbs
8696.3 g / 85.3 N
|
średnie ryzyko |
| 50 mm |
416 Gs
41.6 mT
|
1.83 kg / 4.02 lbs
1825.4 g / 17.9 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 100x40x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
|
| 1 mm | Stal (~0.2) |
22.54 kg / 49.69 lbs
22540.0 g / 221.1 N
|
| 2 mm | Stal (~0.2) |
21.05 kg / 46.42 lbs
21054.0 g / 206.5 N
|
| 3 mm | Stal (~0.2) |
19.58 kg / 43.18 lbs
19584.0 g / 192.1 N
|
| 5 mm | Stal (~0.2) |
16.76 kg / 36.94 lbs
16756.0 g / 164.4 N
|
| 10 mm | Stal (~0.2) |
10.83 kg / 23.88 lbs
10834.0 g / 106.3 N
|
| 15 mm | Stal (~0.2) |
6.79 kg / 14.97 lbs
6792.0 g / 66.6 N
|
| 20 mm | Stal (~0.2) |
4.25 kg / 9.37 lbs
4250.0 g / 41.7 N
|
| 30 mm | Stal (~0.2) |
1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
|
| 50 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 100x40x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
36.00 kg / 79.37 lbs
36003.0 g / 353.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
24.00 kg / 52.92 lbs
24002.0 g / 235.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
12.00 kg / 26.46 lbs
12001.0 g / 117.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
60.01 kg / 132.29 lbs
60005.0 g / 588.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 100x40x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
4.00 kg / 8.82 lbs
4000.3 g / 39.2 N
|
| 1 mm |
|
10.00 kg / 22.05 lbs
10000.8 g / 98.1 N
|
| 2 mm |
|
20.00 kg / 44.10 lbs
20001.7 g / 196.2 N
|
| 3 mm |
|
30.00 kg / 66.14 lbs
30002.5 g / 294.3 N
|
| 5 mm |
|
50.00 kg / 110.24 lbs
50004.2 g / 490.5 N
|
| 10 mm |
|
100.01 kg / 220.48 lbs
100008.3 g / 981.1 N
|
| 11 mm |
|
110.01 kg / 242.53 lbs
110009.2 g / 1079.2 N
|
| 12 mm |
|
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 100x40x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
120.01 kg / 264.58 lbs
120010.0 g / 1177.3 N
|
OK |
| 40 °C | -2.2% |
117.37 kg / 258.76 lbs
117369.8 g / 1151.4 N
|
OK |
| 60 °C | -4.4% |
114.73 kg / 252.94 lbs
114729.6 g / 1125.5 N
|
|
| 80 °C | -6.6% |
112.09 kg / 247.11 lbs
112089.3 g / 1099.6 N
|
|
| 100 °C | -28.8% |
85.45 kg / 188.38 lbs
85447.1 g / 838.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 100x40x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
280.40 kg / 618.18 lbs
4 790 Gs
|
42.06 kg / 92.73 lbs
42060 g / 412.6 N
|
N/A |
| 1 mm |
271.97 kg / 599.59 lbs
6 642 Gs
|
40.80 kg / 89.94 lbs
40796 g / 400.2 N
|
244.77 kg / 539.63 lbs
~0 Gs
|
| 2 mm |
263.31 kg / 580.50 lbs
6 535 Gs
|
39.50 kg / 87.08 lbs
39497 g / 387.5 N
|
236.98 kg / 522.45 lbs
~0 Gs
|
| 3 mm |
254.63 kg / 561.37 lbs
6 427 Gs
|
38.20 kg / 84.21 lbs
38195 g / 374.7 N
|
229.17 kg / 505.24 lbs
~0 Gs
|
| 5 mm |
237.35 kg / 523.26 lbs
6 205 Gs
|
35.60 kg / 78.49 lbs
35602 g / 349.3 N
|
213.61 kg / 470.93 lbs
~0 Gs
|
| 10 mm |
195.76 kg / 431.58 lbs
5 635 Gs
|
29.36 kg / 64.74 lbs
29364 g / 288.1 N
|
176.18 kg / 388.42 lbs
~0 Gs
|
| 20 mm |
126.58 kg / 279.06 lbs
4 531 Gs
|
18.99 kg / 41.86 lbs
18987 g / 186.3 N
|
113.92 kg / 251.15 lbs
~0 Gs
|
| 50 mm |
31.47 kg / 69.38 lbs
2 259 Gs
|
4.72 kg / 10.41 lbs
4721 g / 46.3 N
|
28.32 kg / 62.44 lbs
~0 Gs
|
| 60 mm |
20.32 kg / 44.80 lbs
1 815 Gs
|
3.05 kg / 6.72 lbs
3048 g / 29.9 N
|
18.29 kg / 40.32 lbs
~0 Gs
|
| 70 mm |
13.38 kg / 29.50 lbs
1 473 Gs
|
2.01 kg / 4.42 lbs
2007 g / 19.7 N
|
12.04 kg / 26.55 lbs
~0 Gs
|
| 80 mm |
8.98 kg / 19.80 lbs
1 207 Gs
|
1.35 kg / 2.97 lbs
1347 g / 13.2 N
|
8.08 kg / 17.82 lbs
~0 Gs
|
| 90 mm |
6.14 kg / 13.53 lbs
998 Gs
|
0.92 kg / 2.03 lbs
920 g / 9.0 N
|
5.52 kg / 12.18 lbs
~0 Gs
|
| 100 mm |
4.27 kg / 9.40 lbs
832 Gs
|
0.64 kg / 1.41 lbs
640 g / 6.3 N
|
3.84 kg / 8.46 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 100x40x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 30.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 18.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 100x40x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.84 km/h
(4.96 m/s)
|
7.37 J | |
| 30 mm |
25.80 km/h
(7.17 m/s)
|
15.41 J | |
| 50 mm |
32.20 km/h
(8.94 m/s)
|
23.99 J | |
| 100 mm |
45.13 km/h
(12.54 m/s)
|
47.14 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 100x40x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 100x40x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 131 922 Mx | 1319.2 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 100x40x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 120.01 kg | Standard |
| Woda (dno rzeki) |
137.41 kg
(+17.40 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi tylko ~1% (teoretycznie).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, Au, srebro) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Wady
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje udźwig.
BHP przy magnesach
Nadwrażliwość na metale
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Podatność na pękanie
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Limity termiczne
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Siła neodymu
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Zakaz zabawy
Neodymowe magnesy to nie zabawki. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Implanty kardiologiczne
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Poważne obrażenia
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Urządzenia elektroniczne
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Interferencja magnetyczna
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Obróbka mechaniczna
Pył generowany podczas szlifowania magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
