MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030394
GTIN/EAN: 5906301812319
Średnica
22 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
26.39 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.65 kg / 133.89 N
Indukcja magnetyczna
416.85 mT / 4168 Gs
Powłoka
[NiCuNi] nikiel
13.95 ZŁ z VAT / szt. + cena za transport
11.34 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub zostaw wiadomość korzystając z
formularz kontaktowy
na stronie kontaktowej.
Parametry i kształt magnesów przetestujesz u nas w
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry - MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 22x6x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030394 |
| GTIN/EAN | 5906301812319 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 22 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 26.39 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.65 kg / 133.89 N |
| Indukcja magnetyczna ~ ? | 416.85 mT / 4168 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Niniejsze wartości są rezultat kalkulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MP 22x6x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5864 Gs
586.4 mT
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
krytyczny poziom |
| 1 mm |
5326 Gs
532.6 mT
|
11.26 kg / 24.83 lbs
11261.1 g / 110.5 N
|
krytyczny poziom |
| 2 mm |
4795 Gs
479.5 mT
|
9.13 kg / 20.12 lbs
9127.3 g / 89.5 N
|
średnie ryzyko |
| 3 mm |
4288 Gs
428.8 mT
|
7.30 kg / 16.09 lbs
7299.8 g / 71.6 N
|
średnie ryzyko |
| 5 mm |
3381 Gs
338.1 mT
|
4.54 kg / 10.01 lbs
4539.0 g / 44.5 N
|
średnie ryzyko |
| 10 mm |
1830 Gs
183.0 mT
|
1.33 kg / 2.93 lbs
1329.4 g / 13.0 N
|
słaby uchwyt |
| 15 mm |
1039 Gs
103.9 mT
|
0.43 kg / 0.95 lbs
428.7 g / 4.2 N
|
słaby uchwyt |
| 20 mm |
635 Gs
63.5 mT
|
0.16 kg / 0.35 lbs
159.9 g / 1.6 N
|
słaby uchwyt |
| 30 mm |
285 Gs
28.5 mT
|
0.03 kg / 0.07 lbs
32.1 g / 0.3 N
|
słaby uchwyt |
| 50 mm |
90 Gs
9.0 mT
|
0.00 kg / 0.01 lbs
3.2 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MP 22x6x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| 1 mm | Stal (~0.2) |
2.25 kg / 4.96 lbs
2252.0 g / 22.1 N
|
| 2 mm | Stal (~0.2) |
1.83 kg / 4.03 lbs
1826.0 g / 17.9 N
|
| 3 mm | Stal (~0.2) |
1.46 kg / 3.22 lbs
1460.0 g / 14.3 N
|
| 5 mm | Stal (~0.2) |
0.91 kg / 2.00 lbs
908.0 g / 8.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 22x6x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.10 kg / 9.03 lbs
4095.0 g / 40.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.73 kg / 6.02 lbs
2730.0 g / 26.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.37 kg / 3.01 lbs
1365.0 g / 13.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.83 kg / 15.05 lbs
6825.0 g / 67.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 22x6x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.68 kg / 1.50 lbs
682.5 g / 6.7 N
|
| 1 mm |
|
1.71 kg / 3.76 lbs
1706.3 g / 16.7 N
|
| 2 mm |
|
3.41 kg / 7.52 lbs
3412.5 g / 33.5 N
|
| 3 mm |
|
5.12 kg / 11.28 lbs
5118.8 g / 50.2 N
|
| 5 mm |
|
8.53 kg / 18.81 lbs
8531.3 g / 83.7 N
|
| 10 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
| 11 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
| 12 mm |
|
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MP 22x6x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.65 kg / 30.09 lbs
13650.0 g / 133.9 N
|
OK |
| 40 °C | -2.2% |
13.35 kg / 29.43 lbs
13349.7 g / 131.0 N
|
OK |
| 60 °C | -4.4% |
13.05 kg / 28.77 lbs
13049.4 g / 128.0 N
|
OK |
| 80 °C | -6.6% |
12.75 kg / 28.11 lbs
12749.1 g / 125.1 N
|
|
| 100 °C | -28.8% |
9.72 kg / 21.43 lbs
9718.8 g / 95.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MP 22x6x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.34 kg / 119.79 lbs
6 106 Gs
|
8.15 kg / 17.97 lbs
8151 g / 80.0 N
|
N/A |
| 1 mm |
49.50 kg / 109.14 lbs
11 193 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.22 lbs
~0 Gs
|
| 2 mm |
44.83 kg / 98.83 lbs
10 652 Gs
|
6.72 kg / 14.82 lbs
6724 g / 66.0 N
|
40.34 kg / 88.94 lbs
~0 Gs
|
| 3 mm |
40.43 kg / 89.14 lbs
10 116 Gs
|
6.06 kg / 13.37 lbs
6065 g / 59.5 N
|
36.39 kg / 80.22 lbs
~0 Gs
|
| 5 mm |
32.54 kg / 71.74 lbs
9 075 Gs
|
4.88 kg / 10.76 lbs
4881 g / 47.9 N
|
29.29 kg / 64.57 lbs
~0 Gs
|
| 10 mm |
18.07 kg / 39.83 lbs
6 762 Gs
|
2.71 kg / 5.98 lbs
2710 g / 26.6 N
|
16.26 kg / 35.85 lbs
~0 Gs
|
| 20 mm |
5.29 kg / 11.67 lbs
3 660 Gs
|
0.79 kg / 1.75 lbs
794 g / 7.8 N
|
4.76 kg / 10.50 lbs
~0 Gs
|
| 50 mm |
0.27 kg / 0.60 lbs
828 Gs
|
0.04 kg / 0.09 lbs
41 g / 0.4 N
|
0.24 kg / 0.54 lbs
~0 Gs
|
| 60 mm |
0.13 kg / 0.28 lbs
569 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.25 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.15 lbs
408 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
303 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
231 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
180 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 22x6x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 22x6x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.29 km/h
(6.75 m/s)
|
0.60 J | |
| 30 mm |
39.79 km/h
(11.05 m/s)
|
1.61 J | |
| 50 mm |
51.30 km/h
(14.25 m/s)
|
2.68 J | |
| 100 mm |
72.53 km/h
(20.15 m/s)
|
5.36 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 22x6x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 22x6x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 465 Mx | 164.7 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 22x6x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.65 kg | Standard |
| Woda (dno rzeki) |
15.63 kg
(+1.98 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Są niezbędne w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z zastosowaniem płyty ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Praktyczny udźwig: czynniki wpływające
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
Ostrzeżenia
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Kompas i GPS
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Ostrzeżenie dla alergików
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Interferencja medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Uwaga na odpryski
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Tylko dla dorosłych
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem niepowołanych osób.
Siła zgniatająca
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Świadome użytkowanie
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
