MP 5x2.7/1.2x5 C / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030201
GTIN/EAN: 5906301812180
Średnica
5 mm [±0,1 mm]
Średnica wewnętrzna Ø
2.7/1.2 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
0.69 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.75 kg / 7.31 N
Indukcja magnetyczna
553.14 mT / 5531 Gs
Powłoka
[NiCuNi] nikiel
0.836 ZŁ z VAT / szt. + cena za transport
0.680 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub daj znać przez
nasz formularz online
na stronie kontaktowej.
Siłę i budowę magnesu neodymowego testujesz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MP 5x2.7/1.2x5 C / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 5x2.7/1.2x5 C / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030201 |
| GTIN/EAN | 5906301812180 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 5 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 2.7/1.2 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 0.69 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.75 kg / 7.31 N |
| Indukcja magnetyczna ~ ? | 553.14 mT / 5531 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze informacje stanowią rezultat kalkulacji fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MP 5x2.7/1.2x5 C / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
bezpieczny |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 0.63 lbs
287.5 g / 2.8 N
|
bezpieczny |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 0.21 lbs
93.9 g / 0.9 N
|
bezpieczny |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 0.07 lbs
31.9 g / 0.3 N
|
bezpieczny |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
|
bezpieczny |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 5x2.7/1.2x5 C / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 5x2.7/1.2x5 C / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 0.50 lbs
225.0 g / 2.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 0.83 lbs
375.0 g / 3.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 5x2.7/1.2x5 C / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 0.17 lbs
75.0 g / 0.7 N
|
| 1 mm |
|
0.19 kg / 0.41 lbs
187.5 g / 1.8 N
|
| 2 mm |
|
0.38 kg / 0.83 lbs
375.0 g / 3.7 N
|
| 3 mm |
|
0.56 kg / 1.24 lbs
562.5 g / 5.5 N
|
| 5 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
| 10 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
| 11 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
| 12 mm |
|
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MP 5x2.7/1.2x5 C / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 1.65 lbs
750.0 g / 7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 1.62 lbs
733.5 g / 7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 1.58 lbs
717.0 g / 7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 1.54 lbs
700.5 g / 6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 1.18 lbs
534.0 g / 5.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 5x2.7/1.2x5 C / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.75 kg / 6.06 lbs
5 924 Gs
|
0.41 kg / 0.91 lbs
412 g / 4.0 N
|
N/A |
| 1 mm |
1.77 kg / 3.90 lbs
8 541 Gs
|
0.27 kg / 0.58 lbs
265 g / 2.6 N
|
1.59 kg / 3.51 lbs
~0 Gs
|
| 2 mm |
1.05 kg / 2.32 lbs
6 590 Gs
|
0.16 kg / 0.35 lbs
158 g / 1.5 N
|
0.95 kg / 2.09 lbs
~0 Gs
|
| 3 mm |
0.60 kg / 1.33 lbs
4 992 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.54 kg / 1.20 lbs
~0 Gs
|
| 5 mm |
0.20 kg / 0.44 lbs
2 860 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 10 mm |
0.02 kg / 0.04 lbs
880 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
184 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MP 5x2.7/1.2x5 C / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 5x2.7/1.2x5 C / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
Tabela 9: Parametry powłoki (trwałość)
MP 5x2.7/1.2x5 C / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 5x2.7/1.2x5 C / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 862 Mx | 8.6 µWb |
| Współczynnik Pc | 0.83 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 5x2.7/1.2x5 C / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.75 kg | Standard |
| Woda (dno rzeki) |
0.86 kg
(+0.11 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.83
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem blachy ze stali niskowęglowej, która służy jako element zamykający obwód
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (bez powłok)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Zasady BHP dla użytkowników magnesów
Uwaga medyczna
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ryzyko połknięcia
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Ochrona oczu
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Ogromna siła
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Wpływ na smartfony
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Ryzyko uczulenia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
