MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030200
GTIN/EAN: 5906301812173
Średnica
41 mm [±0,1 mm]
Średnica wewnętrzna Ø
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
85.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.44 kg / 239.78 N
Indukcja magnetyczna
271.77 mT / 2718 Gs
Powłoka
[NiCuNi] nikiel
50.00 ZŁ z VAT / szt. + cena za transport
40.65 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo napisz poprzez
formularz zgłoszeniowy
na stronie kontakt.
Udźwig oraz formę elementów magnetycznych zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030200 |
| GTIN/EAN | 5906301812173 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 41 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 85.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.44 kg / 239.78 N |
| Indukcja magnetyczna ~ ? | 271.77 mT / 2718 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione informacje są rezultat symulacji matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MP 41x15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5232 Gs
523.2 mT
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
miażdżący |
| 1 mm |
4978 Gs
497.8 mT
|
22.12 kg / 48.77 lbs
22120.4 g / 217.0 N
|
miażdżący |
| 2 mm |
4720 Gs
472.0 mT
|
19.89 kg / 43.85 lbs
19888.8 g / 195.1 N
|
miażdżący |
| 3 mm |
4464 Gs
446.4 mT
|
17.79 kg / 39.22 lbs
17788.4 g / 174.5 N
|
miażdżący |
| 5 mm |
3964 Gs
396.4 mT
|
14.03 kg / 30.93 lbs
14030.8 g / 137.6 N
|
miażdżący |
| 10 mm |
2861 Gs
286.1 mT
|
7.31 kg / 16.11 lbs
7308.1 g / 71.7 N
|
uwaga |
| 15 mm |
2028 Gs
202.8 mT
|
3.67 kg / 8.09 lbs
3670.1 g / 36.0 N
|
uwaga |
| 20 mm |
1443 Gs
144.3 mT
|
1.86 kg / 4.10 lbs
1858.4 g / 18.2 N
|
bezpieczny |
| 30 mm |
770 Gs
77.0 mT
|
0.53 kg / 1.17 lbs
529.8 g / 5.2 N
|
bezpieczny |
| 50 mm |
280 Gs
28.0 mT
|
0.07 kg / 0.15 lbs
69.8 g / 0.7 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 41x15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.89 kg / 10.78 lbs
4888.0 g / 48.0 N
|
| 1 mm | Stal (~0.2) |
4.42 kg / 9.75 lbs
4424.0 g / 43.4 N
|
| 2 mm | Stal (~0.2) |
3.98 kg / 8.77 lbs
3978.0 g / 39.0 N
|
| 3 mm | Stal (~0.2) |
3.56 kg / 7.84 lbs
3558.0 g / 34.9 N
|
| 5 mm | Stal (~0.2) |
2.81 kg / 6.19 lbs
2806.0 g / 27.5 N
|
| 10 mm | Stal (~0.2) |
1.46 kg / 3.22 lbs
1462.0 g / 14.3 N
|
| 15 mm | Stal (~0.2) |
0.73 kg / 1.62 lbs
734.0 g / 7.2 N
|
| 20 mm | Stal (~0.2) |
0.37 kg / 0.82 lbs
372.0 g / 3.6 N
|
| 30 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 41x15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.33 kg / 16.16 lbs
7332.0 g / 71.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.89 kg / 10.78 lbs
4888.0 g / 48.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.44 kg / 5.39 lbs
2444.0 g / 24.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.22 kg / 26.94 lbs
12220.0 g / 119.9 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 41x15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.22 kg / 2.69 lbs
1222.0 g / 12.0 N
|
| 1 mm |
|
3.06 kg / 6.74 lbs
3055.0 g / 30.0 N
|
| 2 mm |
|
6.11 kg / 13.47 lbs
6110.0 g / 59.9 N
|
| 3 mm |
|
9.17 kg / 20.21 lbs
9165.0 g / 89.9 N
|
| 5 mm |
|
15.28 kg / 33.68 lbs
15275.0 g / 149.8 N
|
| 10 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
| 11 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
| 12 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MP 41x15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
OK |
| 40 °C | -2.2% |
23.90 kg / 52.70 lbs
23902.3 g / 234.5 N
|
OK |
| 60 °C | -4.4% |
23.36 kg / 51.51 lbs
23364.6 g / 229.2 N
|
OK |
| 80 °C | -6.6% |
22.83 kg / 50.32 lbs
22827.0 g / 223.9 N
|
|
| 100 °C | -28.8% |
17.40 kg / 38.36 lbs
17401.3 g / 170.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MP 41x15x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
178.13 kg / 392.71 lbs
5 907 Gs
|
26.72 kg / 58.91 lbs
26719 g / 262.1 N
|
N/A |
| 1 mm |
169.67 kg / 374.06 lbs
10 213 Gs
|
25.45 kg / 56.11 lbs
25451 g / 249.7 N
|
152.70 kg / 336.65 lbs
~0 Gs
|
| 2 mm |
161.22 kg / 355.43 lbs
9 955 Gs
|
24.18 kg / 53.32 lbs
24183 g / 237.2 N
|
145.10 kg / 319.89 lbs
~0 Gs
|
| 3 mm |
152.98 kg / 337.26 lbs
9 697 Gs
|
22.95 kg / 50.59 lbs
22947 g / 225.1 N
|
137.68 kg / 303.53 lbs
~0 Gs
|
| 5 mm |
137.18 kg / 302.42 lbs
9 183 Gs
|
20.58 kg / 45.36 lbs
20577 g / 201.9 N
|
123.46 kg / 272.18 lbs
~0 Gs
|
| 10 mm |
102.26 kg / 225.45 lbs
7 929 Gs
|
15.34 kg / 33.82 lbs
15339 g / 150.5 N
|
92.04 kg / 202.90 lbs
~0 Gs
|
| 20 mm |
53.26 kg / 117.43 lbs
5 722 Gs
|
7.99 kg / 17.61 lbs
7990 g / 78.4 N
|
47.94 kg / 105.69 lbs
~0 Gs
|
| 50 mm |
7.08 kg / 15.62 lbs
2 087 Gs
|
1.06 kg / 2.34 lbs
1063 g / 10.4 N
|
6.38 kg / 14.06 lbs
~0 Gs
|
| 60 mm |
3.86 kg / 8.51 lbs
1 541 Gs
|
0.58 kg / 1.28 lbs
579 g / 5.7 N
|
3.48 kg / 7.66 lbs
~0 Gs
|
| 70 mm |
2.20 kg / 4.84 lbs
1 162 Gs
|
0.33 kg / 0.73 lbs
330 g / 3.2 N
|
1.98 kg / 4.36 lbs
~0 Gs
|
| 80 mm |
1.30 kg / 2.87 lbs
895 Gs
|
0.20 kg / 0.43 lbs
195 g / 1.9 N
|
1.17 kg / 2.58 lbs
~0 Gs
|
| 90 mm |
0.80 kg / 1.76 lbs
701 Gs
|
0.12 kg / 0.26 lbs
120 g / 1.2 N
|
0.72 kg / 1.59 lbs
~0 Gs
|
| 100 mm |
0.51 kg / 1.12 lbs
559 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 41x15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 41x15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.95 km/h
(5.54 m/s)
|
1.32 J | |
| 30 mm |
29.88 km/h
(8.30 m/s)
|
2.96 J | |
| 50 mm |
38.13 km/h
(10.59 m/s)
|
4.81 J | |
| 100 mm |
53.84 km/h
(14.96 m/s)
|
9.59 J |
Tabela 9: Odporność na korozję
MP 41x15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 41x15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 505 Mx | 565.0 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 41x15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.44 kg | Standard |
| Woda (dno rzeki) |
27.98 kg
(+3.54 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- z powierzchnią wolną od rys
- w warunkach idealnego przylegania (metal do metalu)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda stal powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Ryzyko uczulenia
Pewna grupa użytkowników ma uczulenie na nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może skutkować zaczerwienienie skóry. Sugerujemy stosowanie rękawiczek ochronnych.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Samozapłon
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Nie przegrzewaj magnesów
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Nie dawać dzieciom
Magnesy neodymowe to nie zabawki. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Zagrożenie życia
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić pracę urządzenia ratującego życie.
Urazy ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Łamliwość magnesów
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
