MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030200
GTIN/EAN: 5906301812173
Średnica
41 mm [±0,1 mm]
Średnica wewnętrzna Ø
15 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
85.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
24.44 kg / 239.78 N
Indukcja magnetyczna
271.77 mT / 2718 Gs
Powłoka
[NiCuNi] nikiel
50.00 ZŁ z VAT / szt. + cena za transport
40.65 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Masę i formę magnesu wyliczysz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 41x15x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030200 |
| GTIN/EAN | 5906301812173 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 41 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 15 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 85.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 24.44 kg / 239.78 N |
| Indukcja magnetyczna ~ ? | 271.77 mT / 2718 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze wartości są wynik symulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MP 41x15x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5232 Gs
523.2 mT
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
krytyczny poziom |
| 1 mm |
4978 Gs
497.8 mT
|
22.12 kg / 48.77 lbs
22120.4 g / 217.0 N
|
krytyczny poziom |
| 2 mm |
4720 Gs
472.0 mT
|
19.89 kg / 43.85 lbs
19888.8 g / 195.1 N
|
krytyczny poziom |
| 3 mm |
4464 Gs
446.4 mT
|
17.79 kg / 39.22 lbs
17788.4 g / 174.5 N
|
krytyczny poziom |
| 5 mm |
3964 Gs
396.4 mT
|
14.03 kg / 30.93 lbs
14030.8 g / 137.6 N
|
krytyczny poziom |
| 10 mm |
2861 Gs
286.1 mT
|
7.31 kg / 16.11 lbs
7308.1 g / 71.7 N
|
uwaga |
| 15 mm |
2028 Gs
202.8 mT
|
3.67 kg / 8.09 lbs
3670.1 g / 36.0 N
|
uwaga |
| 20 mm |
1443 Gs
144.3 mT
|
1.86 kg / 4.10 lbs
1858.4 g / 18.2 N
|
bezpieczny |
| 30 mm |
770 Gs
77.0 mT
|
0.53 kg / 1.17 lbs
529.8 g / 5.2 N
|
bezpieczny |
| 50 mm |
280 Gs
28.0 mT
|
0.07 kg / 0.15 lbs
69.8 g / 0.7 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MP 41x15x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.89 kg / 10.78 lbs
4888.0 g / 48.0 N
|
| 1 mm | Stal (~0.2) |
4.42 kg / 9.75 lbs
4424.0 g / 43.4 N
|
| 2 mm | Stal (~0.2) |
3.98 kg / 8.77 lbs
3978.0 g / 39.0 N
|
| 3 mm | Stal (~0.2) |
3.56 kg / 7.84 lbs
3558.0 g / 34.9 N
|
| 5 mm | Stal (~0.2) |
2.81 kg / 6.19 lbs
2806.0 g / 27.5 N
|
| 10 mm | Stal (~0.2) |
1.46 kg / 3.22 lbs
1462.0 g / 14.3 N
|
| 15 mm | Stal (~0.2) |
0.73 kg / 1.62 lbs
734.0 g / 7.2 N
|
| 20 mm | Stal (~0.2) |
0.37 kg / 0.82 lbs
372.0 g / 3.6 N
|
| 30 mm | Stal (~0.2) |
0.11 kg / 0.23 lbs
106.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 41x15x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.33 kg / 16.16 lbs
7332.0 g / 71.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.89 kg / 10.78 lbs
4888.0 g / 48.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.44 kg / 5.39 lbs
2444.0 g / 24.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
12.22 kg / 26.94 lbs
12220.0 g / 119.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 41x15x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.22 kg / 2.69 lbs
1222.0 g / 12.0 N
|
| 1 mm |
|
3.06 kg / 6.74 lbs
3055.0 g / 30.0 N
|
| 2 mm |
|
6.11 kg / 13.47 lbs
6110.0 g / 59.9 N
|
| 3 mm |
|
9.17 kg / 20.21 lbs
9165.0 g / 89.9 N
|
| 5 mm |
|
15.28 kg / 33.68 lbs
15275.0 g / 149.8 N
|
| 10 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
| 11 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
| 12 mm |
|
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MP 41x15x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
24.44 kg / 53.88 lbs
24440.0 g / 239.8 N
|
OK |
| 40 °C | -2.2% |
23.90 kg / 52.70 lbs
23902.3 g / 234.5 N
|
OK |
| 60 °C | -4.4% |
23.36 kg / 51.51 lbs
23364.6 g / 229.2 N
|
OK |
| 80 °C | -6.6% |
22.83 kg / 50.32 lbs
22827.0 g / 223.9 N
|
|
| 100 °C | -28.8% |
17.40 kg / 38.36 lbs
17401.3 g / 170.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 41x15x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
178.13 kg / 392.71 lbs
5 907 Gs
|
26.72 kg / 58.91 lbs
26719 g / 262.1 N
|
N/A |
| 1 mm |
169.67 kg / 374.06 lbs
10 213 Gs
|
25.45 kg / 56.11 lbs
25451 g / 249.7 N
|
152.70 kg / 336.65 lbs
~0 Gs
|
| 2 mm |
161.22 kg / 355.43 lbs
9 955 Gs
|
24.18 kg / 53.32 lbs
24183 g / 237.2 N
|
145.10 kg / 319.89 lbs
~0 Gs
|
| 3 mm |
152.98 kg / 337.26 lbs
9 697 Gs
|
22.95 kg / 50.59 lbs
22947 g / 225.1 N
|
137.68 kg / 303.53 lbs
~0 Gs
|
| 5 mm |
137.18 kg / 302.42 lbs
9 183 Gs
|
20.58 kg / 45.36 lbs
20577 g / 201.9 N
|
123.46 kg / 272.18 lbs
~0 Gs
|
| 10 mm |
102.26 kg / 225.45 lbs
7 929 Gs
|
15.34 kg / 33.82 lbs
15339 g / 150.5 N
|
92.04 kg / 202.90 lbs
~0 Gs
|
| 20 mm |
53.26 kg / 117.43 lbs
5 722 Gs
|
7.99 kg / 17.61 lbs
7990 g / 78.4 N
|
47.94 kg / 105.69 lbs
~0 Gs
|
| 50 mm |
7.08 kg / 15.62 lbs
2 087 Gs
|
1.06 kg / 2.34 lbs
1063 g / 10.4 N
|
6.38 kg / 14.06 lbs
~0 Gs
|
| 60 mm |
3.86 kg / 8.51 lbs
1 541 Gs
|
0.58 kg / 1.28 lbs
579 g / 5.7 N
|
3.48 kg / 7.66 lbs
~0 Gs
|
| 70 mm |
2.20 kg / 4.84 lbs
1 162 Gs
|
0.33 kg / 0.73 lbs
330 g / 3.2 N
|
1.98 kg / 4.36 lbs
~0 Gs
|
| 80 mm |
1.30 kg / 2.87 lbs
895 Gs
|
0.20 kg / 0.43 lbs
195 g / 1.9 N
|
1.17 kg / 2.58 lbs
~0 Gs
|
| 90 mm |
0.80 kg / 1.76 lbs
701 Gs
|
0.12 kg / 0.26 lbs
120 g / 1.2 N
|
0.72 kg / 1.59 lbs
~0 Gs
|
| 100 mm |
0.51 kg / 1.12 lbs
559 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 41x15x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 41x15x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.95 km/h
(5.54 m/s)
|
1.32 J | |
| 30 mm |
29.88 km/h
(8.30 m/s)
|
2.96 J | |
| 50 mm |
38.13 km/h
(10.59 m/s)
|
4.81 J | |
| 100 mm |
53.84 km/h
(14.96 m/s)
|
9.59 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 41x15x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 41x15x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 505 Mx | 565.0 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 41x15x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 24.44 kg | Standard |
| Woda (dno rzeki) |
27.98 kg
(+3.54 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- z zastosowaniem blachy ze miękkiej stali, działającej jako zwora magnetyczna
- której grubość wynosi ok. 10 mm
- o szlifowanej powierzchni kontaktu
- przy bezpośrednim styku (bez farby)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (między magnesem a blachą), ponieważ nawet niewielka odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Kruchość materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Uwaga medyczna
Pacjenci z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Uszkodzenia ciała
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Zagrożenie dla najmłodszych
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne destabilizuje działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Uczulenie na powłokę
Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może powodować zaczerwienienie skóry. Sugerujemy stosowanie rękawic bezlateksowych.
Pole magnetyczne a elektronika
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
