MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030199
GTIN/EAN: 5906301812166
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
35.34 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.24 kg / 70.98 N
Indukcja magnetyczna
150.36 mT / 1504 Gs
Powłoka
[NiCuNi] nikiel
12.24 ZŁ z VAT / szt. + cena za transport
9.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo skontaktuj się za pomocą
nasz formularz online
na naszej stronie.
Właściwości a także wygląd elementów magnetycznych wyliczysz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030199 |
| GTIN/EAN | 5906301812166 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 35.34 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.24 kg / 70.98 N |
| Indukcja magnetyczna ~ ? | 150.36 mT / 1504 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Niniejsze wartości stanowią bezpośredni efekt kalkulacji matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MP 40x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
7.24 kg / 7240.0 g
71.0 N
|
uwaga |
| 1 mm |
5005 Gs
500.5 mT
|
6.53 kg / 6534.7 g
64.1 N
|
uwaga |
| 2 mm |
4739 Gs
473.9 mT
|
5.86 kg / 5857.7 g
57.5 N
|
uwaga |
| 3 mm |
4475 Gs
447.5 mT
|
5.22 kg / 5222.2 g
51.2 N
|
uwaga |
| 5 mm |
3960 Gs
396.0 mT
|
4.09 kg / 4090.8 g
40.1 N
|
uwaga |
| 10 mm |
2832 Gs
283.2 mT
|
2.09 kg / 2092.3 g
20.5 N
|
uwaga |
| 15 mm |
1990 Gs
199.0 mT
|
1.03 kg / 1033.4 g
10.1 N
|
słaby uchwyt |
| 20 mm |
1407 Gs
140.7 mT
|
0.52 kg / 516.3 g
5.1 N
|
słaby uchwyt |
| 30 mm |
745 Gs
74.5 mT
|
0.14 kg / 144.6 g
1.4 N
|
słaby uchwyt |
| 50 mm |
268 Gs
26.8 mT
|
0.02 kg / 18.7 g
0.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MP 40x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.45 kg / 1448.0 g
14.2 N
|
| 1 mm | Stal (~0.2) |
1.31 kg / 1306.0 g
12.8 N
|
| 2 mm | Stal (~0.2) |
1.17 kg / 1172.0 g
11.5 N
|
| 3 mm | Stal (~0.2) |
1.04 kg / 1044.0 g
10.2 N
|
| 5 mm | Stal (~0.2) |
0.82 kg / 818.0 g
8.0 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 418.0 g
4.1 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 206.0 g
2.0 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 40x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 2172.0 g
21.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.45 kg / 1448.0 g
14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 724.0 g
7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.62 kg / 3620.0 g
35.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 40x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 724.0 g
7.1 N
|
| 1 mm |
|
1.81 kg / 1810.0 g
17.8 N
|
| 2 mm |
|
3.62 kg / 3620.0 g
35.5 N
|
| 5 mm |
|
7.24 kg / 7240.0 g
71.0 N
|
| 10 mm |
|
7.24 kg / 7240.0 g
71.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MP 40x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.24 kg / 7240.0 g
71.0 N
|
OK |
| 40 °C | -2.2% |
7.08 kg / 7080.7 g
69.5 N
|
OK |
| 60 °C | -4.4% |
6.92 kg / 6921.4 g
67.9 N
|
OK |
| 80 °C | -6.6% |
6.76 kg / 6762.2 g
66.3 N
|
|
| 100 °C | -28.8% |
5.15 kg / 5154.9 g
50.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 40x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
179.94 kg / 179938 g
1765.2 N
5 920 Gs
|
N/A |
| 1 mm |
171.16 kg / 171163 g
1679.1 N
10 277 Gs
|
154.05 kg / 154047 g
1511.2 N
~0 Gs
|
| 2 mm |
162.41 kg / 162408 g
1593.2 N
10 011 Gs
|
146.17 kg / 146167 g
1433.9 N
~0 Gs
|
| 3 mm |
153.87 kg / 153875 g
1509.5 N
9 744 Gs
|
138.49 kg / 138487 g
1358.6 N
~0 Gs
|
| 5 mm |
137.55 kg / 137550 g
1349.4 N
9 213 Gs
|
123.80 kg / 123795 g
1214.4 N
~0 Gs
|
| 10 mm |
101.67 kg / 101670 g
997.4 N
7 921 Gs
|
91.50 kg / 91503 g
897.6 N
~0 Gs
|
| 20 mm |
52.00 kg / 52001 g
510.1 N
5 665 Gs
|
46.80 kg / 46801 g
459.1 N
~0 Gs
|
| 50 mm |
6.64 kg / 6642 g
65.2 N
2 025 Gs
|
5.98 kg / 5978 g
58.6 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 40x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 14.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 11.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 40x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.84 km/h
(4.68 m/s)
|
0.39 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
0.87 J | |
| 50 mm |
32.33 km/h
(8.98 m/s)
|
1.43 J | |
| 100 mm |
45.65 km/h
(12.68 m/s)
|
2.84 J |
Tabela 9: Parametry powłoki (trwałość)
MP 40x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 40x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 325 Mx | 563.3 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 40x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.24 kg | Standard |
| Woda (dno rzeki) |
8.29 kg
(+1.05 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
- o grubości przynajmniej 10 mm
- o szlifowanej powierzchni kontaktu
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy osiowym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina powietrzna (między magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Ostrzeżenia
Zagrożenie dla elektroniki
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Ostrzeżenie dla sercowców
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Ostrzeżenie dla alergików
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Ryzyko połknięcia
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Samozapłon
Proszek generowany podczas obróbki magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ogromna siła
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Uwaga na odpryski
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Trzymaj z dala od elektroniki
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
