MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030199
GTIN/EAN: 5906301812166
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
35.34 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.24 kg / 70.98 N
Indukcja magnetyczna
150.36 mT / 1504 Gs
Powłoka
[NiCuNi] nikiel
12.24 ZŁ z VAT / szt. + cena za transport
9.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz korzystając z
formularz kontaktowy
przez naszą stronę.
Moc oraz budowę magnesu neodymowego obliczysz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry techniczne - MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030199 |
| GTIN/EAN | 5906301812166 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 35.34 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.24 kg / 70.98 N |
| Indukcja magnetyczna ~ ? | 150.36 mT / 1504 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Niniejsze informacje stanowią wynik analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MP 40x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
mocny |
| 1 mm |
5005 Gs
500.5 mT
|
6.53 kg / 14.41 lbs
6534.7 g / 64.1 N
|
mocny |
| 2 mm |
4739 Gs
473.9 mT
|
5.86 kg / 12.91 lbs
5857.7 g / 57.5 N
|
mocny |
| 3 mm |
4475 Gs
447.5 mT
|
5.22 kg / 11.51 lbs
5222.2 g / 51.2 N
|
mocny |
| 5 mm |
3960 Gs
396.0 mT
|
4.09 kg / 9.02 lbs
4090.8 g / 40.1 N
|
mocny |
| 10 mm |
2832 Gs
283.2 mT
|
2.09 kg / 4.61 lbs
2092.3 g / 20.5 N
|
mocny |
| 15 mm |
1990 Gs
199.0 mT
|
1.03 kg / 2.28 lbs
1033.4 g / 10.1 N
|
niskie ryzyko |
| 20 mm |
1407 Gs
140.7 mT
|
0.52 kg / 1.14 lbs
516.3 g / 5.1 N
|
niskie ryzyko |
| 30 mm |
745 Gs
74.5 mT
|
0.14 kg / 0.32 lbs
144.6 g / 1.4 N
|
niskie ryzyko |
| 50 mm |
268 Gs
26.8 mT
|
0.02 kg / 0.04 lbs
18.7 g / 0.2 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MP 40x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.45 kg / 3.19 lbs
1448.0 g / 14.2 N
|
| 1 mm | Stal (~0.2) |
1.31 kg / 2.88 lbs
1306.0 g / 12.8 N
|
| 2 mm | Stal (~0.2) |
1.17 kg / 2.58 lbs
1172.0 g / 11.5 N
|
| 3 mm | Stal (~0.2) |
1.04 kg / 2.30 lbs
1044.0 g / 10.2 N
|
| 5 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
818.0 g / 8.0 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 40x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 4.79 lbs
2172.0 g / 21.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.45 kg / 3.19 lbs
1448.0 g / 14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 1.60 lbs
724.0 g / 7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.62 kg / 7.98 lbs
3620.0 g / 35.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 40x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 1.60 lbs
724.0 g / 7.1 N
|
| 1 mm |
|
1.81 kg / 3.99 lbs
1810.0 g / 17.8 N
|
| 2 mm |
|
3.62 kg / 7.98 lbs
3620.0 g / 35.5 N
|
| 3 mm |
|
5.43 kg / 11.97 lbs
5430.0 g / 53.3 N
|
| 5 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
| 10 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
| 11 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
| 12 mm |
|
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MP 40x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.24 kg / 15.96 lbs
7240.0 g / 71.0 N
|
OK |
| 40 °C | -2.2% |
7.08 kg / 15.61 lbs
7080.7 g / 69.5 N
|
OK |
| 60 °C | -4.4% |
6.92 kg / 15.26 lbs
6921.4 g / 67.9 N
|
OK |
| 80 °C | -6.6% |
6.76 kg / 14.91 lbs
6762.2 g / 66.3 N
|
|
| 100 °C | -28.8% |
5.15 kg / 11.36 lbs
5154.9 g / 50.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 40x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
179.94 kg / 396.69 lbs
5 920 Gs
|
26.99 kg / 59.50 lbs
26991 g / 264.8 N
|
N/A |
| 1 mm |
171.16 kg / 377.35 lbs
10 277 Gs
|
25.67 kg / 56.60 lbs
25675 g / 251.9 N
|
154.05 kg / 339.62 lbs
~0 Gs
|
| 2 mm |
162.41 kg / 358.05 lbs
10 011 Gs
|
24.36 kg / 53.71 lbs
24361 g / 239.0 N
|
146.17 kg / 322.24 lbs
~0 Gs
|
| 3 mm |
153.87 kg / 339.24 lbs
9 744 Gs
|
23.08 kg / 50.89 lbs
23081 g / 226.4 N
|
138.49 kg / 305.31 lbs
~0 Gs
|
| 5 mm |
137.55 kg / 303.25 lbs
9 213 Gs
|
20.63 kg / 45.49 lbs
20633 g / 202.4 N
|
123.80 kg / 272.92 lbs
~0 Gs
|
| 10 mm |
101.67 kg / 224.14 lbs
7 921 Gs
|
15.25 kg / 33.62 lbs
15251 g / 149.6 N
|
91.50 kg / 201.73 lbs
~0 Gs
|
| 20 mm |
52.00 kg / 114.64 lbs
5 665 Gs
|
7.80 kg / 17.20 lbs
7800 g / 76.5 N
|
46.80 kg / 103.18 lbs
~0 Gs
|
| 50 mm |
6.64 kg / 14.64 lbs
2 025 Gs
|
1.00 kg / 2.20 lbs
996 g / 9.8 N
|
5.98 kg / 13.18 lbs
~0 Gs
|
| 60 mm |
3.59 kg / 7.92 lbs
1 489 Gs
|
0.54 kg / 1.19 lbs
539 g / 5.3 N
|
3.23 kg / 7.13 lbs
~0 Gs
|
| 70 mm |
2.03 kg / 4.48 lbs
1 120 Gs
|
0.30 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.03 lbs
~0 Gs
|
| 80 mm |
1.20 kg / 2.64 lbs
860 Gs
|
0.18 kg / 0.40 lbs
180 g / 1.8 N
|
1.08 kg / 2.38 lbs
~0 Gs
|
| 90 mm |
0.73 kg / 1.62 lbs
673 Gs
|
0.11 kg / 0.24 lbs
110 g / 1.1 N
|
0.66 kg / 1.46 lbs
~0 Gs
|
| 100 mm |
0.47 kg / 1.03 lbs
536 Gs
|
0.07 kg / 0.15 lbs
70 g / 0.7 N
|
0.42 kg / 0.92 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 40x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 40x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.84 km/h
(4.68 m/s)
|
0.39 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
0.87 J | |
| 50 mm |
32.33 km/h
(8.98 m/s)
|
1.43 J | |
| 100 mm |
45.65 km/h
(12.68 m/s)
|
2.84 J |
Tabela 9: Parametry powłoki (trwałość)
MP 40x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 40x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 325 Mx | 563.3 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 40x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.24 kg | Standard |
| Woda (dno rzeki) |
8.29 kg
(+1.05 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- której grubość to min. 10 mm
- o idealnie gładkiej powierzchni styku
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje udźwig.
Ostrzeżenia
Uszkodzenia ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Temperatura pracy
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.
Nie zbliżaj do komputera
Potężne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Niebezpieczeństwo dla rozruszników
Osoby z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zatrzymać działanie implantu.
Ryzyko połknięcia
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Potężne pole
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Podatność na pękanie
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Zakaz obróbki
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
