MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030199
GTIN/EAN: 5906301812166
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
35.34 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.24 kg / 70.98 N
Indukcja magnetyczna
150.36 mT / 1504 Gs
Powłoka
[NiCuNi] nikiel
12.24 ZŁ z VAT / szt. + cena za transport
9.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń już teraz
+48 888 99 98 98
lub pisz korzystając z
formularz zapytania
na stronie kontakt.
Parametry oraz budowę magnesów neodymowych zobaczysz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030199 |
| GTIN/EAN | 5906301812166 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 35.34 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.24 kg / 70.98 N |
| Indukcja magnetyczna ~ ? | 150.36 mT / 1504 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Niniejsze wartości stanowią rezultat symulacji matematycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
MP 40x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
7.24 kg / 7240.0 g
71.0 N
|
mocny |
| 1 mm |
5005 Gs
500.5 mT
|
6.53 kg / 6534.7 g
64.1 N
|
mocny |
| 2 mm |
4739 Gs
473.9 mT
|
5.86 kg / 5857.7 g
57.5 N
|
mocny |
| 3 mm |
4475 Gs
447.5 mT
|
5.22 kg / 5222.2 g
51.2 N
|
mocny |
| 5 mm |
3960 Gs
396.0 mT
|
4.09 kg / 4090.8 g
40.1 N
|
mocny |
| 10 mm |
2832 Gs
283.2 mT
|
2.09 kg / 2092.3 g
20.5 N
|
mocny |
| 15 mm |
1990 Gs
199.0 mT
|
1.03 kg / 1033.4 g
10.1 N
|
niskie ryzyko |
| 20 mm |
1407 Gs
140.7 mT
|
0.52 kg / 516.3 g
5.1 N
|
niskie ryzyko |
| 30 mm |
745 Gs
74.5 mT
|
0.14 kg / 144.6 g
1.4 N
|
niskie ryzyko |
| 50 mm |
268 Gs
26.8 mT
|
0.02 kg / 18.7 g
0.2 N
|
niskie ryzyko |
MP 40x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.45 kg / 1448.0 g
14.2 N
|
| 1 mm | Stal (~0.2) |
1.31 kg / 1306.0 g
12.8 N
|
| 2 mm | Stal (~0.2) |
1.17 kg / 1172.0 g
11.5 N
|
| 3 mm | Stal (~0.2) |
1.04 kg / 1044.0 g
10.2 N
|
| 5 mm | Stal (~0.2) |
0.82 kg / 818.0 g
8.0 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 418.0 g
4.1 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 206.0 g
2.0 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
MP 40x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 2172.0 g
21.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.45 kg / 1448.0 g
14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 724.0 g
7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.62 kg / 3620.0 g
35.5 N
|
MP 40x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 724.0 g
7.1 N
|
| 1 mm |
|
1.81 kg / 1810.0 g
17.8 N
|
| 2 mm |
|
3.62 kg / 3620.0 g
35.5 N
|
| 5 mm |
|
7.24 kg / 7240.0 g
71.0 N
|
| 10 mm |
|
7.24 kg / 7240.0 g
71.0 N
|
MP 40x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.24 kg / 7240.0 g
71.0 N
|
OK |
| 40 °C | -2.2% |
7.08 kg / 7080.7 g
69.5 N
|
OK |
| 60 °C | -4.4% |
6.92 kg / 6921.4 g
67.9 N
|
OK |
| 80 °C | -6.6% |
6.76 kg / 6762.2 g
66.3 N
|
|
| 100 °C | -28.8% |
5.15 kg / 5154.9 g
50.6 N
|
MP 40x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
179.94 kg / 179938 g
1765.2 N
5 920 Gs
|
N/A |
| 1 mm |
171.16 kg / 171163 g
1679.1 N
10 277 Gs
|
154.05 kg / 154047 g
1511.2 N
~0 Gs
|
| 2 mm |
162.41 kg / 162408 g
1593.2 N
10 011 Gs
|
146.17 kg / 146167 g
1433.9 N
~0 Gs
|
| 3 mm |
153.87 kg / 153875 g
1509.5 N
9 744 Gs
|
138.49 kg / 138487 g
1358.6 N
~0 Gs
|
| 5 mm |
137.55 kg / 137550 g
1349.4 N
9 213 Gs
|
123.80 kg / 123795 g
1214.4 N
~0 Gs
|
| 10 mm |
101.67 kg / 101670 g
997.4 N
7 921 Gs
|
91.50 kg / 91503 g
897.6 N
~0 Gs
|
| 20 mm |
52.00 kg / 52001 g
510.1 N
5 665 Gs
|
46.80 kg / 46801 g
459.1 N
~0 Gs
|
| 50 mm |
6.64 kg / 6642 g
65.2 N
2 025 Gs
|
5.98 kg / 5978 g
58.6 N
~0 Gs
|
MP 40x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 11.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
MP 40x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.84 km/h
(4.68 m/s)
|
0.39 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
0.87 J | |
| 50 mm |
32.33 km/h
(8.98 m/s)
|
1.43 J | |
| 100 mm |
45.65 km/h
(12.68 m/s)
|
2.84 J |
MP 40x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 40x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 325 Mx | 563.3 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
MP 40x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.24 kg | Standard |
| Woda (dno rzeki) |
8.29 kg
(+1.05 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
UMP 94x40 [3xM10] GW F550 Silver Black / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi jedynie ~1% (teoretycznie).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – obecność ciała obcego (farba, brud, powietrze) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Produkt nie dla dzieci
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Implanty kardiologiczne
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Niklowa powłoka a alergia
Część populacji posiada uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może powodować wysypkę. Sugerujemy stosowanie rękawiczek ochronnych.
Interferencja magnetyczna
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kruchy spiek
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Nie wierć w magnesach
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
