MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030199
GTIN/EAN: 5906301812166
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
35.34 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.24 kg / 70.98 N
Indukcja magnetyczna
150.36 mT / 1504 Gs
Powłoka
[NiCuNi] nikiel
12.24 ZŁ z VAT / szt. + cena za transport
9.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub skontaktuj się korzystając z
nasz formularz online
na stronie kontaktowej.
Parametry i formę elementów magnetycznych zobaczysz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja produktu - MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030199 |
| GTIN/EAN | 5906301812166 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 35.34 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.24 kg / 70.98 N |
| Indukcja magnetyczna ~ ? | 150.36 mT / 1504 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią rezultat kalkulacji fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 40x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5269 Gs
526.9 mT
|
7.24 kg / 7240.0 g
71.0 N
|
mocny |
| 1 mm |
5005 Gs
500.5 mT
|
6.53 kg / 6534.7 g
64.1 N
|
mocny |
| 2 mm |
4739 Gs
473.9 mT
|
5.86 kg / 5857.7 g
57.5 N
|
mocny |
| 3 mm |
4475 Gs
447.5 mT
|
5.22 kg / 5222.2 g
51.2 N
|
mocny |
| 5 mm |
3960 Gs
396.0 mT
|
4.09 kg / 4090.8 g
40.1 N
|
mocny |
| 10 mm |
2832 Gs
283.2 mT
|
2.09 kg / 2092.3 g
20.5 N
|
mocny |
| 15 mm |
1990 Gs
199.0 mT
|
1.03 kg / 1033.4 g
10.1 N
|
niskie ryzyko |
| 20 mm |
1407 Gs
140.7 mT
|
0.52 kg / 516.3 g
5.1 N
|
niskie ryzyko |
| 30 mm |
745 Gs
74.5 mT
|
0.14 kg / 144.6 g
1.4 N
|
niskie ryzyko |
| 50 mm |
268 Gs
26.8 mT
|
0.02 kg / 18.7 g
0.2 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 40x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.45 kg / 1448.0 g
14.2 N
|
| 1 mm | Stal (~0.2) |
1.31 kg / 1306.0 g
12.8 N
|
| 2 mm | Stal (~0.2) |
1.17 kg / 1172.0 g
11.5 N
|
| 3 mm | Stal (~0.2) |
1.04 kg / 1044.0 g
10.2 N
|
| 5 mm | Stal (~0.2) |
0.82 kg / 818.0 g
8.0 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 418.0 g
4.1 N
|
| 15 mm | Stal (~0.2) |
0.21 kg / 206.0 g
2.0 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 40x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 2172.0 g
21.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.45 kg / 1448.0 g
14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 724.0 g
7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.62 kg / 3620.0 g
35.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 40x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 724.0 g
7.1 N
|
| 1 mm |
|
1.81 kg / 1810.0 g
17.8 N
|
| 2 mm |
|
3.62 kg / 3620.0 g
35.5 N
|
| 5 mm |
|
7.24 kg / 7240.0 g
71.0 N
|
| 10 mm |
|
7.24 kg / 7240.0 g
71.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MP 40x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.24 kg / 7240.0 g
71.0 N
|
OK |
| 40 °C | -2.2% |
7.08 kg / 7080.7 g
69.5 N
|
OK |
| 60 °C | -4.4% |
6.92 kg / 6921.4 g
67.9 N
|
OK |
| 80 °C | -6.6% |
6.76 kg / 6762.2 g
66.3 N
|
|
| 100 °C | -28.8% |
5.15 kg / 5154.9 g
50.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 40x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
179.94 kg / 179938 g
1765.2 N
5 920 Gs
|
N/A |
| 1 mm |
171.16 kg / 171163 g
1679.1 N
10 277 Gs
|
154.05 kg / 154047 g
1511.2 N
~0 Gs
|
| 2 mm |
162.41 kg / 162408 g
1593.2 N
10 011 Gs
|
146.17 kg / 146167 g
1433.9 N
~0 Gs
|
| 3 mm |
153.87 kg / 153875 g
1509.5 N
9 744 Gs
|
138.49 kg / 138487 g
1358.6 N
~0 Gs
|
| 5 mm |
137.55 kg / 137550 g
1349.4 N
9 213 Gs
|
123.80 kg / 123795 g
1214.4 N
~0 Gs
|
| 10 mm |
101.67 kg / 101670 g
997.4 N
7 921 Gs
|
91.50 kg / 91503 g
897.6 N
~0 Gs
|
| 20 mm |
52.00 kg / 52001 g
510.1 N
5 665 Gs
|
46.80 kg / 46801 g
459.1 N
~0 Gs
|
| 50 mm |
6.64 kg / 6642 g
65.2 N
2 025 Gs
|
5.98 kg / 5978 g
58.6 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 40x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 14.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MP 40x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.84 km/h
(4.68 m/s)
|
0.39 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
0.87 J | |
| 50 mm |
32.33 km/h
(8.98 m/s)
|
1.43 J | |
| 100 mm |
45.65 km/h
(12.68 m/s)
|
2.84 J |
Tabela 9: Odporność na korozję
MP 40x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 40x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 56 325 Mx | 563.3 µWb |
| Współczynnik Pc | 0.80 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 40x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.24 kg | Standard |
| Woda (dno rzeki) |
8.29 kg
(+1.05 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.80
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (nikiel, złoto, Ag) mają nowoczesny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Najwyższa nośność magnesu – od czego zależy?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Ogromna siła
Używaj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Niszczenie danych
Ekstremalne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Zagrożenie wybuchem pyłu
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
To nie jest zabawka
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Dla uczulonych
Niektóre osoby ma uczulenie na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może skutkować zaczerwienienie skóry. Zalecamy używanie rękawic bezlateksowych.
Zagrożenie fizyczne
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Kruchy spiek
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
