MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030197
GTIN/EAN: 5906301812142
Średnica
30 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
50.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.71 kg / 203.16 N
Indukcja magnetyczna
343.81 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
16.00 ZŁ z VAT / szt. + cena za transport
13.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub daj znać za pomocą
formularz zapytania
na naszej stronie.
Właściwości a także wygląd magnesów neodymowych sprawdzisz w naszym
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030197 |
| GTIN/EAN | 5906301812142 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 30 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 50.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.71 kg / 203.16 N |
| Indukcja magnetyczna ~ ? | 343.81 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - raport
Niniejsze informacje stanowią wynik symulacji fizycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 30x6x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5619 Gs
561.9 mT
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
miażdżący |
| 1 mm |
5241 Gs
524.1 mT
|
18.01 kg / 39.71 lbs
18011.7 g / 176.7 N
|
miażdżący |
| 2 mm |
4861 Gs
486.1 mT
|
15.50 kg / 34.17 lbs
15498.1 g / 152.0 N
|
miażdżący |
| 3 mm |
4490 Gs
449.0 mT
|
13.22 kg / 29.15 lbs
13223.5 g / 129.7 N
|
miażdżący |
| 5 mm |
3792 Gs
379.2 mT
|
9.43 kg / 20.79 lbs
9429.0 g / 92.5 N
|
średnie ryzyko |
| 10 mm |
2404 Gs
240.4 mT
|
3.79 kg / 8.36 lbs
3791.3 g / 37.2 N
|
średnie ryzyko |
| 15 mm |
1526 Gs
152.6 mT
|
1.53 kg / 3.37 lbs
1527.0 g / 15.0 N
|
słaby uchwyt |
| 20 mm |
1000 Gs
100.0 mT
|
0.66 kg / 1.45 lbs
655.5 g / 6.4 N
|
słaby uchwyt |
| 30 mm |
482 Gs
48.2 mT
|
0.15 kg / 0.34 lbs
152.6 g / 1.5 N
|
słaby uchwyt |
| 50 mm |
161 Gs
16.1 mT
|
0.02 kg / 0.04 lbs
17.0 g / 0.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MP 30x6x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.14 kg / 9.13 lbs
4142.0 g / 40.6 N
|
| 1 mm | Stal (~0.2) |
3.60 kg / 7.94 lbs
3602.0 g / 35.3 N
|
| 2 mm | Stal (~0.2) |
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 3 mm | Stal (~0.2) |
2.64 kg / 5.83 lbs
2644.0 g / 25.9 N
|
| 5 mm | Stal (~0.2) |
1.89 kg / 4.16 lbs
1886.0 g / 18.5 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 1.67 lbs
758.0 g / 7.4 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 0.67 lbs
306.0 g / 3.0 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 30x6x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.21 kg / 13.70 lbs
6213.0 g / 60.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.14 kg / 9.13 lbs
4142.0 g / 40.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2071.0 g / 20.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.36 kg / 22.83 lbs
10355.0 g / 101.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 30x6x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.28 lbs
1035.5 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.71 lbs
2588.8 g / 25.4 N
|
| 2 mm |
|
5.18 kg / 11.41 lbs
5177.5 g / 50.8 N
|
| 3 mm |
|
7.77 kg / 17.12 lbs
7766.3 g / 76.2 N
|
| 5 mm |
|
12.94 kg / 28.54 lbs
12943.8 g / 127.0 N
|
| 10 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
| 11 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
| 12 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MP 30x6x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
OK |
| 40 °C | -2.2% |
20.25 kg / 44.65 lbs
20254.4 g / 198.7 N
|
OK |
| 60 °C | -4.4% |
19.80 kg / 43.65 lbs
19798.8 g / 194.2 N
|
OK |
| 80 °C | -6.6% |
19.34 kg / 42.64 lbs
19343.1 g / 189.8 N
|
|
| 100 °C | -28.8% |
14.75 kg / 32.51 lbs
14745.5 g / 144.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 30x6x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.97 kg / 229.22 lbs
6 035 Gs
|
15.60 kg / 34.38 lbs
15596 g / 153.0 N
|
N/A |
| 1 mm |
97.15 kg / 214.17 lbs
10 864 Gs
|
14.57 kg / 32.13 lbs
14572 g / 143.0 N
|
87.43 kg / 192.75 lbs
~0 Gs
|
| 2 mm |
90.42 kg / 199.35 lbs
10 481 Gs
|
13.56 kg / 29.90 lbs
13564 g / 133.1 N
|
81.38 kg / 179.42 lbs
~0 Gs
|
| 3 mm |
83.97 kg / 185.13 lbs
10 100 Gs
|
12.60 kg / 27.77 lbs
12596 g / 123.6 N
|
75.57 kg / 166.61 lbs
~0 Gs
|
| 5 mm |
71.94 kg / 158.60 lbs
9 349 Gs
|
10.79 kg / 23.79 lbs
10791 g / 105.9 N
|
64.75 kg / 142.74 lbs
~0 Gs
|
| 10 mm |
47.34 kg / 104.36 lbs
7 583 Gs
|
7.10 kg / 15.65 lbs
7100 g / 69.7 N
|
42.60 kg / 93.92 lbs
~0 Gs
|
| 20 mm |
19.03 kg / 41.96 lbs
4 809 Gs
|
2.86 kg / 6.29 lbs
2855 g / 28.0 N
|
17.13 kg / 37.77 lbs
~0 Gs
|
| 50 mm |
1.53 kg / 3.37 lbs
1 363 Gs
|
0.23 kg / 0.51 lbs
229 g / 2.2 N
|
1.38 kg / 3.03 lbs
~0 Gs
|
| 60 mm |
0.77 kg / 1.69 lbs
965 Gs
|
0.11 kg / 0.25 lbs
115 g / 1.1 N
|
0.69 kg / 1.52 lbs
~0 Gs
|
| 70 mm |
0.41 kg / 0.90 lbs
706 Gs
|
0.06 kg / 0.14 lbs
61 g / 0.6 N
|
0.37 kg / 0.81 lbs
~0 Gs
|
| 80 mm |
0.23 kg / 0.51 lbs
531 Gs
|
0.03 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.46 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.30 lbs
409 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 lbs
322 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 30x6x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 30x6x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.55 km/h
(6.26 m/s)
|
1.00 J | |
| 30 mm |
35.40 km/h
(9.83 m/s)
|
2.46 J | |
| 50 mm |
45.52 km/h
(12.64 m/s)
|
4.07 J | |
| 100 mm |
64.34 km/h
(17.87 m/s)
|
8.13 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 30x6x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 30x6x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 31 585 Mx | 315.8 µWb |
| Współczynnik Pc | 0.96 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 30x6x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.71 kg | Standard |
| Woda (dno rzeki) |
23.71 kg
(+3.00 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.96
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z wykorzystaniem podłoża ze miękkiej stali, pełniącej rolę zwora magnetyczna
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy zerowej szczelinie (bez powłok)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – zbyt cienka stal nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Bezpieczna praca przy magnesach neodymowych
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Uczulenie na powłokę
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może powodować silną reakcję alergiczną. Wskazane jest noszenie rękawic bezlateksowych.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca funkcjonowanie czujników w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
