MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030197
GTIN/EAN: 5906301812142
Średnica
30 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
50.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.71 kg / 203.16 N
Indukcja magnetyczna
343.81 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
16.00 ZŁ z VAT / szt. + cena za transport
13.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo skontaktuj się za pomocą
formularz
w sekcji kontakt.
Udźwig a także wygląd magnesu neodymowego przetestujesz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne produktu - MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030197 |
| GTIN/EAN | 5906301812142 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 30 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 50.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.71 kg / 203.16 N |
| Indukcja magnetyczna ~ ? | 343.81 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Poniższe dane stanowią bezpośredni efekt symulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 30x6x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5619 Gs
561.9 mT
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
miażdżący |
| 1 mm |
5241 Gs
524.1 mT
|
18.01 kg / 39.71 lbs
18011.7 g / 176.7 N
|
miażdżący |
| 2 mm |
4861 Gs
486.1 mT
|
15.50 kg / 34.17 lbs
15498.1 g / 152.0 N
|
miażdżący |
| 3 mm |
4490 Gs
449.0 mT
|
13.22 kg / 29.15 lbs
13223.5 g / 129.7 N
|
miażdżący |
| 5 mm |
3792 Gs
379.2 mT
|
9.43 kg / 20.79 lbs
9429.0 g / 92.5 N
|
średnie ryzyko |
| 10 mm |
2404 Gs
240.4 mT
|
3.79 kg / 8.36 lbs
3791.3 g / 37.2 N
|
średnie ryzyko |
| 15 mm |
1526 Gs
152.6 mT
|
1.53 kg / 3.37 lbs
1527.0 g / 15.0 N
|
słaby uchwyt |
| 20 mm |
1000 Gs
100.0 mT
|
0.66 kg / 1.45 lbs
655.5 g / 6.4 N
|
słaby uchwyt |
| 30 mm |
482 Gs
48.2 mT
|
0.15 kg / 0.34 lbs
152.6 g / 1.5 N
|
słaby uchwyt |
| 50 mm |
161 Gs
16.1 mT
|
0.02 kg / 0.04 lbs
17.0 g / 0.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MP 30x6x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.14 kg / 9.13 lbs
4142.0 g / 40.6 N
|
| 1 mm | Stal (~0.2) |
3.60 kg / 7.94 lbs
3602.0 g / 35.3 N
|
| 2 mm | Stal (~0.2) |
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 3 mm | Stal (~0.2) |
2.64 kg / 5.83 lbs
2644.0 g / 25.9 N
|
| 5 mm | Stal (~0.2) |
1.89 kg / 4.16 lbs
1886.0 g / 18.5 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 1.67 lbs
758.0 g / 7.4 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 0.67 lbs
306.0 g / 3.0 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 30x6x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.21 kg / 13.70 lbs
6213.0 g / 60.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.14 kg / 9.13 lbs
4142.0 g / 40.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2071.0 g / 20.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.36 kg / 22.83 lbs
10355.0 g / 101.6 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 30x6x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.28 lbs
1035.5 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.71 lbs
2588.8 g / 25.4 N
|
| 2 mm |
|
5.18 kg / 11.41 lbs
5177.5 g / 50.8 N
|
| 3 mm |
|
7.77 kg / 17.12 lbs
7766.3 g / 76.2 N
|
| 5 mm |
|
12.94 kg / 28.54 lbs
12943.8 g / 127.0 N
|
| 10 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
| 11 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
| 12 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MP 30x6x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
OK |
| 40 °C | -2.2% |
20.25 kg / 44.65 lbs
20254.4 g / 198.7 N
|
OK |
| 60 °C | -4.4% |
19.80 kg / 43.65 lbs
19798.8 g / 194.2 N
|
OK |
| 80 °C | -6.6% |
19.34 kg / 42.64 lbs
19343.1 g / 189.8 N
|
|
| 100 °C | -28.8% |
14.75 kg / 32.51 lbs
14745.5 g / 144.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MP 30x6x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.97 kg / 229.22 lbs
6 035 Gs
|
15.60 kg / 34.38 lbs
15596 g / 153.0 N
|
N/A |
| 1 mm |
97.15 kg / 214.17 lbs
10 864 Gs
|
14.57 kg / 32.13 lbs
14572 g / 143.0 N
|
87.43 kg / 192.75 lbs
~0 Gs
|
| 2 mm |
90.42 kg / 199.35 lbs
10 481 Gs
|
13.56 kg / 29.90 lbs
13564 g / 133.1 N
|
81.38 kg / 179.42 lbs
~0 Gs
|
| 3 mm |
83.97 kg / 185.13 lbs
10 100 Gs
|
12.60 kg / 27.77 lbs
12596 g / 123.6 N
|
75.57 kg / 166.61 lbs
~0 Gs
|
| 5 mm |
71.94 kg / 158.60 lbs
9 349 Gs
|
10.79 kg / 23.79 lbs
10791 g / 105.9 N
|
64.75 kg / 142.74 lbs
~0 Gs
|
| 10 mm |
47.34 kg / 104.36 lbs
7 583 Gs
|
7.10 kg / 15.65 lbs
7100 g / 69.7 N
|
42.60 kg / 93.92 lbs
~0 Gs
|
| 20 mm |
19.03 kg / 41.96 lbs
4 809 Gs
|
2.86 kg / 6.29 lbs
2855 g / 28.0 N
|
17.13 kg / 37.77 lbs
~0 Gs
|
| 50 mm |
1.53 kg / 3.37 lbs
1 363 Gs
|
0.23 kg / 0.51 lbs
229 g / 2.2 N
|
1.38 kg / 3.03 lbs
~0 Gs
|
| 60 mm |
0.77 kg / 1.69 lbs
965 Gs
|
0.11 kg / 0.25 lbs
115 g / 1.1 N
|
0.69 kg / 1.52 lbs
~0 Gs
|
| 70 mm |
0.41 kg / 0.90 lbs
706 Gs
|
0.06 kg / 0.14 lbs
61 g / 0.6 N
|
0.37 kg / 0.81 lbs
~0 Gs
|
| 80 mm |
0.23 kg / 0.51 lbs
531 Gs
|
0.03 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.46 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.30 lbs
409 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 lbs
322 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 30x6x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 30x6x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.55 km/h
(6.26 m/s)
|
1.00 J | |
| 30 mm |
35.40 km/h
(9.83 m/s)
|
2.46 J | |
| 50 mm |
45.52 km/h
(12.64 m/s)
|
4.07 J | |
| 100 mm |
64.34 km/h
(17.87 m/s)
|
8.13 J |
Tabela 9: Odporność na korozję
MP 30x6x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 30x6x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 31 585 Mx | 315.8 µWb |
| Współczynnik Pc | 0.96 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 30x6x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.71 kg | Standard |
| Woda (dno rzeki) |
23.71 kg
(+3.00 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.96
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości przynajmniej 10 mm
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Masywność podłoża – za chuda blacha nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Ostrzeżenia
Nadwrażliwość na metale
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Ochrona oczu
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Produkt nie dla dzieci
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Temperatura pracy
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Rozruszniki serca
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
