MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030197
GTIN/EAN: 5906301812142
Średnica
30 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
50.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.71 kg / 203.16 N
Indukcja magnetyczna
343.81 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
16.00 ZŁ z VAT / szt. + cena za transport
13.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz poprzez
formularz kontaktowy
na stronie kontakt.
Moc a także wygląd magnesów obliczysz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030197 |
| GTIN/EAN | 5906301812142 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 30 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 50.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.71 kg / 203.16 N |
| Indukcja magnetyczna ~ ? | 343.81 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Niniejsze wartości stanowią wynik symulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MP 30x6x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5619 Gs
561.9 mT
|
20.71 kg / 20710.0 g
203.2 N
|
niebezpieczny! |
| 1 mm |
5241 Gs
524.1 mT
|
18.01 kg / 18011.7 g
176.7 N
|
niebezpieczny! |
| 2 mm |
4861 Gs
486.1 mT
|
15.50 kg / 15498.1 g
152.0 N
|
niebezpieczny! |
| 3 mm |
4490 Gs
449.0 mT
|
13.22 kg / 13223.5 g
129.7 N
|
niebezpieczny! |
| 5 mm |
3792 Gs
379.2 mT
|
9.43 kg / 9429.0 g
92.5 N
|
mocny |
| 10 mm |
2404 Gs
240.4 mT
|
3.79 kg / 3791.3 g
37.2 N
|
mocny |
| 15 mm |
1526 Gs
152.6 mT
|
1.53 kg / 1527.0 g
15.0 N
|
słaby uchwyt |
| 20 mm |
1000 Gs
100.0 mT
|
0.66 kg / 655.5 g
6.4 N
|
słaby uchwyt |
| 30 mm |
482 Gs
48.2 mT
|
0.15 kg / 152.6 g
1.5 N
|
słaby uchwyt |
| 50 mm |
161 Gs
16.1 mT
|
0.02 kg / 17.0 g
0.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 30x6x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.14 kg / 4142.0 g
40.6 N
|
| 1 mm | Stal (~0.2) |
3.60 kg / 3602.0 g
35.3 N
|
| 2 mm | Stal (~0.2) |
3.10 kg / 3100.0 g
30.4 N
|
| 3 mm | Stal (~0.2) |
2.64 kg / 2644.0 g
25.9 N
|
| 5 mm | Stal (~0.2) |
1.89 kg / 1886.0 g
18.5 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 758.0 g
7.4 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 306.0 g
3.0 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 132.0 g
1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 30x6x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.21 kg / 6213.0 g
60.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.14 kg / 4142.0 g
40.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 2071.0 g
20.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.36 kg / 10355.0 g
101.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 30x6x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 1035.5 g
10.2 N
|
| 1 mm |
|
2.59 kg / 2588.8 g
25.4 N
|
| 2 mm |
|
5.18 kg / 5177.5 g
50.8 N
|
| 5 mm |
|
12.94 kg / 12943.8 g
127.0 N
|
| 10 mm |
|
20.71 kg / 20710.0 g
203.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MP 30x6x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.71 kg / 20710.0 g
203.2 N
|
OK |
| 40 °C | -2.2% |
20.25 kg / 20254.4 g
198.7 N
|
OK |
| 60 °C | -4.4% |
19.80 kg / 19798.8 g
194.2 N
|
OK |
| 80 °C | -6.6% |
19.34 kg / 19343.1 g
189.8 N
|
|
| 100 °C | -28.8% |
14.75 kg / 14745.5 g
144.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 30x6x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
103.97 kg / 103971 g
1020.0 N
6 035 Gs
|
N/A |
| 1 mm |
97.15 kg / 97146 g
953.0 N
10 864 Gs
|
87.43 kg / 87431 g
857.7 N
~0 Gs
|
| 2 mm |
90.42 kg / 90424 g
887.1 N
10 481 Gs
|
81.38 kg / 81382 g
798.4 N
~0 Gs
|
| 3 mm |
83.97 kg / 83971 g
823.8 N
10 100 Gs
|
75.57 kg / 75574 g
741.4 N
~0 Gs
|
| 5 mm |
71.94 kg / 71940 g
705.7 N
9 349 Gs
|
64.75 kg / 64746 g
635.2 N
~0 Gs
|
| 10 mm |
47.34 kg / 47337 g
464.4 N
7 583 Gs
|
42.60 kg / 42603 g
417.9 N
~0 Gs
|
| 20 mm |
19.03 kg / 19034 g
186.7 N
4 809 Gs
|
17.13 kg / 17130 g
168.0 N
~0 Gs
|
| 50 mm |
1.53 kg / 1529 g
15.0 N
1 363 Gs
|
1.38 kg / 1376 g
13.5 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 30x6x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 12.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 30x6x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.55 km/h
(6.26 m/s)
|
1.00 J | |
| 30 mm |
35.40 km/h
(9.83 m/s)
|
2.46 J | |
| 50 mm |
45.52 km/h
(12.64 m/s)
|
4.07 J | |
| 100 mm |
64.34 km/h
(17.87 m/s)
|
8.13 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 30x6x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 30x6x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 31 585 Mx | 315.8 µWb |
| Współczynnik Pc | 0.96 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 30x6x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.71 kg | Standard |
| Woda (dno rzeki) |
23.71 kg
(+3.00 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.96
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co się na to składa?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Niszczenie danych
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Zagrożenie fizyczne
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj z dala od dzieci i zwierząt.
Pył jest łatwopalny
Proszek generowany podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Bezpieczna praca
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Smartfony i tablety
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
