MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030197
GTIN/EAN: 5906301812142
Średnica
30 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
50.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.71 kg / 203.16 N
Indukcja magnetyczna
343.81 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
16.00 ZŁ z VAT / szt. + cena za transport
13.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub skontaktuj się przez
formularz zapytania
przez naszą stronę.
Siłę i budowę elementów magnetycznych sprawdzisz dzięki naszemu
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 30x6x10 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030197 |
| GTIN/EAN | 5906301812142 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 30 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 50.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.71 kg / 203.16 N |
| Indukcja magnetyczna ~ ? | 343.81 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Przedstawione informacje są rezultat symulacji matematycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MP 30x6x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5619 Gs
561.9 mT
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
krytyczny poziom |
| 1 mm |
5241 Gs
524.1 mT
|
18.01 kg / 39.71 lbs
18011.7 g / 176.7 N
|
krytyczny poziom |
| 2 mm |
4861 Gs
486.1 mT
|
15.50 kg / 34.17 lbs
15498.1 g / 152.0 N
|
krytyczny poziom |
| 3 mm |
4490 Gs
449.0 mT
|
13.22 kg / 29.15 lbs
13223.5 g / 129.7 N
|
krytyczny poziom |
| 5 mm |
3792 Gs
379.2 mT
|
9.43 kg / 20.79 lbs
9429.0 g / 92.5 N
|
średnie ryzyko |
| 10 mm |
2404 Gs
240.4 mT
|
3.79 kg / 8.36 lbs
3791.3 g / 37.2 N
|
średnie ryzyko |
| 15 mm |
1526 Gs
152.6 mT
|
1.53 kg / 3.37 lbs
1527.0 g / 15.0 N
|
bezpieczny |
| 20 mm |
1000 Gs
100.0 mT
|
0.66 kg / 1.45 lbs
655.5 g / 6.4 N
|
bezpieczny |
| 30 mm |
482 Gs
48.2 mT
|
0.15 kg / 0.34 lbs
152.6 g / 1.5 N
|
bezpieczny |
| 50 mm |
161 Gs
16.1 mT
|
0.02 kg / 0.04 lbs
17.0 g / 0.2 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 30x6x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.14 kg / 9.13 lbs
4142.0 g / 40.6 N
|
| 1 mm | Stal (~0.2) |
3.60 kg / 7.94 lbs
3602.0 g / 35.3 N
|
| 2 mm | Stal (~0.2) |
3.10 kg / 6.83 lbs
3100.0 g / 30.4 N
|
| 3 mm | Stal (~0.2) |
2.64 kg / 5.83 lbs
2644.0 g / 25.9 N
|
| 5 mm | Stal (~0.2) |
1.89 kg / 4.16 lbs
1886.0 g / 18.5 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 1.67 lbs
758.0 g / 7.4 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 0.67 lbs
306.0 g / 3.0 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 30x6x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.21 kg / 13.70 lbs
6213.0 g / 60.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.14 kg / 9.13 lbs
4142.0 g / 40.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2071.0 g / 20.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.36 kg / 22.83 lbs
10355.0 g / 101.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 30x6x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.28 lbs
1035.5 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.71 lbs
2588.8 g / 25.4 N
|
| 2 mm |
|
5.18 kg / 11.41 lbs
5177.5 g / 50.8 N
|
| 3 mm |
|
7.77 kg / 17.12 lbs
7766.3 g / 76.2 N
|
| 5 mm |
|
12.94 kg / 28.54 lbs
12943.8 g / 127.0 N
|
| 10 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
| 11 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
| 12 mm |
|
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MP 30x6x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.71 kg / 45.66 lbs
20710.0 g / 203.2 N
|
OK |
| 40 °C | -2.2% |
20.25 kg / 44.65 lbs
20254.4 g / 198.7 N
|
OK |
| 60 °C | -4.4% |
19.80 kg / 43.65 lbs
19798.8 g / 194.2 N
|
OK |
| 80 °C | -6.6% |
19.34 kg / 42.64 lbs
19343.1 g / 189.8 N
|
|
| 100 °C | -28.8% |
14.75 kg / 32.51 lbs
14745.5 g / 144.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 30x6x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.97 kg / 229.22 lbs
6 035 Gs
|
15.60 kg / 34.38 lbs
15596 g / 153.0 N
|
N/A |
| 1 mm |
97.15 kg / 214.17 lbs
10 864 Gs
|
14.57 kg / 32.13 lbs
14572 g / 143.0 N
|
87.43 kg / 192.75 lbs
~0 Gs
|
| 2 mm |
90.42 kg / 199.35 lbs
10 481 Gs
|
13.56 kg / 29.90 lbs
13564 g / 133.1 N
|
81.38 kg / 179.42 lbs
~0 Gs
|
| 3 mm |
83.97 kg / 185.13 lbs
10 100 Gs
|
12.60 kg / 27.77 lbs
12596 g / 123.6 N
|
75.57 kg / 166.61 lbs
~0 Gs
|
| 5 mm |
71.94 kg / 158.60 lbs
9 349 Gs
|
10.79 kg / 23.79 lbs
10791 g / 105.9 N
|
64.75 kg / 142.74 lbs
~0 Gs
|
| 10 mm |
47.34 kg / 104.36 lbs
7 583 Gs
|
7.10 kg / 15.65 lbs
7100 g / 69.7 N
|
42.60 kg / 93.92 lbs
~0 Gs
|
| 20 mm |
19.03 kg / 41.96 lbs
4 809 Gs
|
2.86 kg / 6.29 lbs
2855 g / 28.0 N
|
17.13 kg / 37.77 lbs
~0 Gs
|
| 50 mm |
1.53 kg / 3.37 lbs
1 363 Gs
|
0.23 kg / 0.51 lbs
229 g / 2.2 N
|
1.38 kg / 3.03 lbs
~0 Gs
|
| 60 mm |
0.77 kg / 1.69 lbs
965 Gs
|
0.11 kg / 0.25 lbs
115 g / 1.1 N
|
0.69 kg / 1.52 lbs
~0 Gs
|
| 70 mm |
0.41 kg / 0.90 lbs
706 Gs
|
0.06 kg / 0.14 lbs
61 g / 0.6 N
|
0.37 kg / 0.81 lbs
~0 Gs
|
| 80 mm |
0.23 kg / 0.51 lbs
531 Gs
|
0.03 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.46 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.30 lbs
409 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 lbs
322 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 30x6x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MP 30x6x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.55 km/h
(6.26 m/s)
|
1.00 J | |
| 30 mm |
35.40 km/h
(9.83 m/s)
|
2.46 J | |
| 50 mm |
45.52 km/h
(12.64 m/s)
|
4.07 J | |
| 100 mm |
64.34 km/h
(17.87 m/s)
|
8.13 J |
Tabela 9: Odporność na korozję
MP 30x6x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 30x6x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 31 585 Mx | 315.8 µWb |
| Współczynnik Pc | 0.96 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 30x6x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.71 kg | Standard |
| Woda (dno rzeki) |
23.71 kg
(+3.00 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.96
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- z wykorzystaniem podłoża ze stali niskowęglowej, która służy jako element zamykający obwód
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Nadwrażliwość na metale
Niektóre osoby posiada alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może wywołać silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
Podatność na pękanie
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Ryzyko złamań
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Niszczenie danych
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
