MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030196
GTIN/EAN: 5906301812135
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
16.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.16 kg / 70.21 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
5.90 ZŁ z VAT / szt. + cena za transport
4.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie skontaktuj się korzystając z
formularz zapytania
w sekcji kontakt.
Parametry a także formę magnesów sprawdzisz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x8x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030196 |
| GTIN/EAN | 5906301812135 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 16.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.16 kg / 70.21 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Przedstawione dane stanowią bezpośredni efekt analizy inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 25x8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
7.16 kg / 7160.0 g
70.2 N
|
średnie ryzyko |
| 1 mm |
5310 Gs
531.0 mT
|
6.05 kg / 6048.6 g
59.3 N
|
średnie ryzyko |
| 2 mm |
4846 Gs
484.6 mT
|
5.04 kg / 5036.9 g
49.4 N
|
średnie ryzyko |
| 3 mm |
4397 Gs
439.7 mT
|
4.15 kg / 4148.2 g
40.7 N
|
średnie ryzyko |
| 5 mm |
3576 Gs
357.6 mT
|
2.74 kg / 2743.2 g
26.9 N
|
średnie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
0.92 kg / 921.6 g
9.0 N
|
słaby uchwyt |
| 15 mm |
1231 Gs
123.1 mT
|
0.33 kg / 325.2 g
3.2 N
|
słaby uchwyt |
| 20 mm |
773 Gs
77.3 mT
|
0.13 kg / 128.0 g
1.3 N
|
słaby uchwyt |
| 30 mm |
356 Gs
35.6 mT
|
0.03 kg / 27.2 g
0.3 N
|
słaby uchwyt |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 2.8 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 25x8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.43 kg / 1432.0 g
14.0 N
|
| 1 mm | Stal (~0.2) |
1.21 kg / 1210.0 g
11.9 N
|
| 2 mm | Stal (~0.2) |
1.01 kg / 1008.0 g
9.9 N
|
| 3 mm | Stal (~0.2) |
0.83 kg / 830.0 g
8.1 N
|
| 5 mm | Stal (~0.2) |
0.55 kg / 548.0 g
5.4 N
|
| 10 mm | Stal (~0.2) |
0.18 kg / 184.0 g
1.8 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 25x8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.15 kg / 2148.0 g
21.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.43 kg / 1432.0 g
14.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 716.0 g
7.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.58 kg / 3580.0 g
35.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 25x8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 716.0 g
7.0 N
|
| 1 mm |
|
1.79 kg / 1790.0 g
17.6 N
|
| 2 mm |
|
3.58 kg / 3580.0 g
35.1 N
|
| 5 mm |
|
7.16 kg / 7160.0 g
70.2 N
|
| 10 mm |
|
7.16 kg / 7160.0 g
70.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 25x8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.16 kg / 7160.0 g
70.2 N
|
OK |
| 40 °C | -2.2% |
7.00 kg / 7002.5 g
68.7 N
|
OK |
| 60 °C | -4.4% |
6.84 kg / 6845.0 g
67.1 N
|
OK |
| 80 °C | -6.6% |
6.69 kg / 6687.4 g
65.6 N
|
|
| 100 °C | -28.8% |
5.10 kg / 5097.9 g
50.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MP 25x8x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
82.42 kg / 82425 g
808.6 N
6 082 Gs
|
N/A |
| 1 mm |
75.95 kg / 75948 g
745.0 N
11 091 Gs
|
68.35 kg / 68353 g
670.5 N
~0 Gs
|
| 2 mm |
69.63 kg / 69631 g
683.1 N
10 620 Gs
|
62.67 kg / 62668 g
614.8 N
~0 Gs
|
| 3 mm |
63.64 kg / 63636 g
624.3 N
10 153 Gs
|
57.27 kg / 57272 g
561.8 N
~0 Gs
|
| 5 mm |
52.69 kg / 52687 g
516.9 N
9 238 Gs
|
47.42 kg / 47418 g
465.2 N
~0 Gs
|
| 10 mm |
31.58 kg / 31579 g
309.8 N
7 152 Gs
|
28.42 kg / 28421 g
278.8 N
~0 Gs
|
| 20 mm |
10.61 kg / 10609 g
104.1 N
4 145 Gs
|
9.55 kg / 9548 g
93.7 N
~0 Gs
|
| 50 mm |
0.65 kg / 648 g
6.4 N
1 024 Gs
|
0.58 kg / 583 g
5.7 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 25x8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 25x8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.62 km/h
(6.28 m/s)
|
0.33 J | |
| 30 mm |
36.45 km/h
(10.13 m/s)
|
0.85 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.41 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
2.81 J |
Tabela 9: Parametry powłoki (trwałość)
MP 25x8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 25x8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 536 Mx | 245.4 µWb |
| Współczynnik Pc | 1.03 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 25x8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.16 kg | Standard |
| Woda (dno rzeki) |
8.20 kg
(+1.04 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.03
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (brak powłok)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia ucieka na drugą stronę.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Unikaj kontaktu w przypadku alergii
Niektóre osoby posiada alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Zalecamy używanie rękawic bezlateksowych.
Ostrożność wymagana
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Bezpieczny dystans
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Interferencja magnetyczna
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Ryzyko pożaru
Proszek generowany podczas cięcia magnesów jest wybuchowy. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
