MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030189
GTIN/EAN: 5906301812067
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
11.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.22 kg / 70.81 N
Indukcja magnetyczna
318.85 mT / 3188 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie daj znać za pomocą
formularz kontaktowy
przez naszą stronę.
Właściwości oraz kształt magnesu neodymowego obliczysz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Parametry - MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030189 |
| GTIN/EAN | 5906301812067 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 11.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.22 kg / 70.81 N |
| Indukcja magnetyczna ~ ? | 318.85 mT / 3188 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze wartości stanowią wynik kalkulacji inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MP 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
5.84 kg / 12.87 lbs
5839.8 g / 57.3 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
4.63 kg / 10.20 lbs
4626.6 g / 45.4 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
2.13 kg / 4.70 lbs
2132.9 g / 20.9 N
|
uwaga |
| 10 mm |
1650 Gs
165.0 mT
|
0.56 kg / 1.24 lbs
561.3 g / 5.5 N
|
bezpieczny |
| 15 mm |
907 Gs
90.7 mT
|
0.17 kg / 0.37 lbs
169.7 g / 1.7 N
|
bezpieczny |
| 20 mm |
544 Gs
54.4 mT
|
0.06 kg / 0.13 lbs
61.1 g / 0.6 N
|
bezpieczny |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.03 lbs
11.9 g / 0.1 N
|
bezpieczny |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.44 kg / 3.18 lbs
1444.0 g / 14.2 N
|
| 1 mm | Stal (~0.2) |
1.17 kg / 2.57 lbs
1168.0 g / 11.5 N
|
| 2 mm | Stal (~0.2) |
0.93 kg / 2.04 lbs
926.0 g / 9.1 N
|
| 3 mm | Stal (~0.2) |
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| 5 mm | Stal (~0.2) |
0.43 kg / 0.94 lbs
426.0 g / 4.2 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 4.78 lbs
2166.0 g / 21.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.44 kg / 3.18 lbs
1444.0 g / 14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 1.59 lbs
722.0 g / 7.1 N
|
| 1 mm |
|
1.81 kg / 3.98 lbs
1805.0 g / 17.7 N
|
| 2 mm |
|
3.61 kg / 7.96 lbs
3610.0 g / 35.4 N
|
| 3 mm |
|
5.42 kg / 11.94 lbs
5415.0 g / 53.1 N
|
| 5 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 10 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 11 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
| 12 mm |
|
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MP 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.22 kg / 15.92 lbs
7220.0 g / 70.8 N
|
OK |
| 40 °C | -2.2% |
7.06 kg / 15.57 lbs
7061.2 g / 69.3 N
|
OK |
| 60 °C | -4.4% |
6.90 kg / 15.22 lbs
6902.3 g / 67.7 N
|
OK |
| 80 °C | -6.6% |
6.74 kg / 14.87 lbs
6743.5 g / 66.2 N
|
|
| 100 °C | -28.8% |
5.14 kg / 11.33 lbs
5140.6 g / 50.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg) (N-N) |
|---|---|---|---|
| 0 mm |
52.44 kg / 115.62 lbs
6 121 Gs
|
7.87 kg / 17.34 lbs
7867 g / 77.2 N
|
N/A |
| 1 mm |
47.33 kg / 104.35 lbs
11 242 Gs
|
7.10 kg / 15.65 lbs
7100 g / 69.6 N
|
42.60 kg / 93.91 lbs
~0 Gs
|
| 2 mm |
42.42 kg / 93.52 lbs
10 642 Gs
|
6.36 kg / 14.03 lbs
6363 g / 62.4 N
|
38.18 kg / 84.16 lbs
~0 Gs
|
| 3 mm |
37.84 kg / 83.42 lbs
10 051 Gs
|
5.68 kg / 12.51 lbs
5675 g / 55.7 N
|
34.05 kg / 75.07 lbs
~0 Gs
|
| 5 mm |
29.73 kg / 65.55 lbs
8 910 Gs
|
4.46 kg / 9.83 lbs
4460 g / 43.8 N
|
26.76 kg / 59.00 lbs
~0 Gs
|
| 10 mm |
15.49 kg / 34.16 lbs
6 432 Gs
|
2.32 kg / 5.12 lbs
2324 g / 22.8 N
|
13.94 kg / 30.74 lbs
~0 Gs
|
| 20 mm |
4.08 kg / 8.99 lbs
3 299 Gs
|
0.61 kg / 1.35 lbs
612 g / 6.0 N
|
3.67 kg / 8.09 lbs
~0 Gs
|
| 50 mm |
0.18 kg / 0.41 lbs
702 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.37 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.19 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.04 km/h
(7.23 m/s)
|
0.31 J | |
| 30 mm |
43.11 km/h
(11.97 m/s)
|
0.85 J | |
| 50 mm |
55.60 km/h
(15.44 m/s)
|
1.42 J | |
| 100 mm |
78.62 km/h
(21.84 m/s)
|
2.83 J |
Tabela 9: Parametry powłoki (trwałość)
MP 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 688 Mx | 156.9 µWb |
| Współczynnik Pc | 1.14 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.22 kg | Standard |
| Woda (dno rzeki) |
8.27 kg
(+1.05 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.14
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalny udźwig magnesu – od czego zależy?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- przy całkowitym braku odstępu (bez farby)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Łatwopalność
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Siła neodymu
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Maksymalna temperatura
Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Ochrona oczu
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Interferencja medyczna
Pacjenci z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
Nadwrażliwość na metale
Niektóre osoby ma uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Rekomendujemy noszenie rękawiczek ochronnych.
