MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030189
GTIN: 5906301812067
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
11.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.22 kg / 70.81 N
Indukcja magnetyczna
318.85 mT / 3188 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Dzwoń do nas
+48 888 99 98 98
alternatywnie skontaktuj się przez
formularz zapytania
na stronie kontaktowej.
Masę i formę elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030189 |
| GTIN | 5906301812067 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 11.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.22 kg / 70.81 N |
| Indukcja magnetyczna ~ ? | 318.85 mT / 3188 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione wartości stanowią rezultat symulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy NdFeB. Rzeczywiste osiągi mogą się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
MP 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
7.22 kg / 7220.0 g
70.8 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
5.84 kg / 5839.8 g
57.3 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
4.63 kg / 4626.6 g
45.4 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
3.61 kg / 3610.0 g
35.4 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
2.13 kg / 2132.9 g
20.9 N
|
uwaga |
| 10 mm |
1650 Gs
165.0 mT
|
0.56 kg / 561.3 g
5.5 N
|
bezpieczny |
| 15 mm |
907 Gs
90.7 mT
|
0.17 kg / 169.7 g
1.7 N
|
bezpieczny |
| 20 mm |
544 Gs
54.4 mT
|
0.06 kg / 61.1 g
0.6 N
|
bezpieczny |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 11.9 g
0.1 N
|
bezpieczny |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 1.2 g
0.0 N
|
bezpieczny |
MP 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.44 kg / 1444.0 g
14.2 N
|
| 1 mm | Stal (~0.2) |
1.17 kg / 1168.0 g
11.5 N
|
| 2 mm | Stal (~0.2) |
0.93 kg / 926.0 g
9.1 N
|
| 3 mm | Stal (~0.2) |
0.72 kg / 722.0 g
7.1 N
|
| 5 mm | Stal (~0.2) |
0.43 kg / 426.0 g
4.2 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 112.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 2166.0 g
21.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.44 kg / 1444.0 g
14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 722.0 g
7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.61 kg / 3610.0 g
35.4 N
|
MP 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 722.0 g
7.1 N
|
| 1 mm |
|
1.81 kg / 1805.0 g
17.7 N
|
| 2 mm |
|
3.61 kg / 3610.0 g
35.4 N
|
| 5 mm |
|
7.22 kg / 7220.0 g
70.8 N
|
| 10 mm |
|
7.22 kg / 7220.0 g
70.8 N
|
MP 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.22 kg / 7220.0 g
70.8 N
|
OK |
| 40 °C | -2.2% |
7.06 kg / 7061.2 g
69.3 N
|
OK |
| 60 °C | -4.4% |
6.90 kg / 6902.3 g
67.7 N
|
OK |
| 80 °C | -6.6% |
6.74 kg / 6743.5 g
66.2 N
|
|
| 100 °C | -28.8% |
5.14 kg / 5140.6 g
50.4 N
|
MP 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
52.44 kg / 52443 g
514.5 N
6 121 Gs
|
N/A |
| 1 mm |
47.33 kg / 47332 g
464.3 N
11 242 Gs
|
42.60 kg / 42599 g
417.9 N
~0 Gs
|
| 2 mm |
42.42 kg / 42418 g
416.1 N
10 642 Gs
|
38.18 kg / 38176 g
374.5 N
~0 Gs
|
| 3 mm |
37.84 kg / 37837 g
371.2 N
10 051 Gs
|
34.05 kg / 34053 g
334.1 N
~0 Gs
|
| 5 mm |
29.73 kg / 29735 g
291.7 N
8 910 Gs
|
26.76 kg / 26761 g
262.5 N
~0 Gs
|
| 10 mm |
15.49 kg / 15493 g
152.0 N
6 432 Gs
|
13.94 kg / 13943 g
136.8 N
~0 Gs
|
| 20 mm |
4.08 kg / 4077 g
40.0 N
3 299 Gs
|
3.67 kg / 3669 g
36.0 N
~0 Gs
|
| 50 mm |
0.18 kg / 185 g
1.8 N
702 Gs
|
0.17 kg / 166 g
1.6 N
~0 Gs
|
MP 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MP 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.04 km/h
(7.23 m/s)
|
0.31 J | |
| 30 mm |
43.11 km/h
(11.97 m/s)
|
0.85 J | |
| 50 mm |
55.60 km/h
(15.44 m/s)
|
1.42 J | |
| 100 mm |
78.62 km/h
(21.84 m/s)
|
2.83 J |
MP 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 688 Mx | 156.9 µWb |
| Współczynnik Pc | 1.14 | Wysoki (Stabilny) |
MP 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.22 kg | Standard |
| Woda (dno rzeki) |
8.27 kg
(+1.05 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych NdFeB.
Poza ponadprzeciętną mocą, te produkty posiadają wiele innych atutów::
- Cechują się stabilnością – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
Podany w tabeli udźwig jest wynikiem testu laboratoryjnego zrealizowanego w warunkach wzorcowych:
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- przy bezpośrednim styku (brak zanieczyszczeń)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
Podczas codziennego użytkowania, realna moc wynika z szeregu czynników, które przedstawiamy od najważniejszych:
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Zalety oraz wady magnesów neodymowych NdFeB.
Poza ponadprzeciętną mocą, te produkty posiadają wiele innych atutów::
- Cechują się stabilnością – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
Podany w tabeli udźwig jest wynikiem testu laboratoryjnego zrealizowanego w warunkach wzorcowych:
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- przy bezpośrednim styku (brak zanieczyszczeń)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
Podczas codziennego użytkowania, realna moc wynika z szeregu czynników, które przedstawiamy od najważniejszych:
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Podatność na pękanie
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Zagrożenie fizyczne
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Nie dawać dzieciom
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Ogromna siła
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Zachowaj ostrożność!
Potrzebujesz więcej danych? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
