MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030189
GTIN/EAN: 5906301812067
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
11.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.22 kg / 70.81 N
Indukcja magnetyczna
318.85 mT / 3188 Gs
Powłoka
[NiCuNi] nikiel
5.17 ZŁ z VAT / szt. + cena za transport
4.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
lub zostaw wiadomość przez
nasz formularz online
w sekcji kontakt.
Udźwig oraz formę elementów magnetycznych zobaczysz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8x6 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030189 |
| GTIN/EAN | 5906301812067 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 11.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.22 kg / 70.81 N |
| Indukcja magnetyczna ~ ? | 318.85 mT / 3188 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Niniejsze informacje są rezultat kalkulacji fizycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MP 20x8x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
7.22 kg / 7220.0 g
70.8 N
|
średnie ryzyko |
| 1 mm |
5321 Gs
532.1 mT
|
5.84 kg / 5839.8 g
57.3 N
|
średnie ryzyko |
| 2 mm |
4736 Gs
473.6 mT
|
4.63 kg / 4626.6 g
45.4 N
|
średnie ryzyko |
| 3 mm |
4184 Gs
418.4 mT
|
3.61 kg / 3610.0 g
35.4 N
|
średnie ryzyko |
| 5 mm |
3216 Gs
321.6 mT
|
2.13 kg / 2132.9 g
20.9 N
|
średnie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.56 kg / 561.3 g
5.5 N
|
słaby uchwyt |
| 15 mm |
907 Gs
90.7 mT
|
0.17 kg / 169.7 g
1.7 N
|
słaby uchwyt |
| 20 mm |
544 Gs
54.4 mT
|
0.06 kg / 61.1 g
0.6 N
|
słaby uchwyt |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 11.9 g
0.1 N
|
słaby uchwyt |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 1.2 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MP 20x8x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.44 kg / 1444.0 g
14.2 N
|
| 1 mm | Stal (~0.2) |
1.17 kg / 1168.0 g
11.5 N
|
| 2 mm | Stal (~0.2) |
0.93 kg / 926.0 g
9.1 N
|
| 3 mm | Stal (~0.2) |
0.72 kg / 722.0 g
7.1 N
|
| 5 mm | Stal (~0.2) |
0.43 kg / 426.0 g
4.2 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 112.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 20x8x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.17 kg / 2166.0 g
21.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.44 kg / 1444.0 g
14.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.72 kg / 722.0 g
7.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.61 kg / 3610.0 g
35.4 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 20x8x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.72 kg / 722.0 g
7.1 N
|
| 1 mm |
|
1.81 kg / 1805.0 g
17.7 N
|
| 2 mm |
|
3.61 kg / 3610.0 g
35.4 N
|
| 5 mm |
|
7.22 kg / 7220.0 g
70.8 N
|
| 10 mm |
|
7.22 kg / 7220.0 g
70.8 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MP 20x8x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.22 kg / 7220.0 g
70.8 N
|
OK |
| 40 °C | -2.2% |
7.06 kg / 7061.2 g
69.3 N
|
OK |
| 60 °C | -4.4% |
6.90 kg / 6902.3 g
67.7 N
|
OK |
| 80 °C | -6.6% |
6.74 kg / 6743.5 g
66.2 N
|
|
| 100 °C | -28.8% |
5.14 kg / 5140.6 g
50.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 20x8x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
52.44 kg / 52443 g
514.5 N
6 121 Gs
|
N/A |
| 1 mm |
47.33 kg / 47332 g
464.3 N
11 242 Gs
|
42.60 kg / 42599 g
417.9 N
~0 Gs
|
| 2 mm |
42.42 kg / 42418 g
416.1 N
10 642 Gs
|
38.18 kg / 38176 g
374.5 N
~0 Gs
|
| 3 mm |
37.84 kg / 37837 g
371.2 N
10 051 Gs
|
34.05 kg / 34053 g
334.1 N
~0 Gs
|
| 5 mm |
29.73 kg / 29735 g
291.7 N
8 910 Gs
|
26.76 kg / 26761 g
262.5 N
~0 Gs
|
| 10 mm |
15.49 kg / 15493 g
152.0 N
6 432 Gs
|
13.94 kg / 13943 g
136.8 N
~0 Gs
|
| 20 mm |
4.08 kg / 4077 g
40.0 N
3 299 Gs
|
3.67 kg / 3669 g
36.0 N
~0 Gs
|
| 50 mm |
0.18 kg / 185 g
1.8 N
702 Gs
|
0.17 kg / 166 g
1.6 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 20x8x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 20x8x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.04 km/h
(7.23 m/s)
|
0.31 J | |
| 30 mm |
43.11 km/h
(11.97 m/s)
|
0.85 J | |
| 50 mm |
55.60 km/h
(15.44 m/s)
|
1.42 J | |
| 100 mm |
78.62 km/h
(21.84 m/s)
|
2.83 J |
Tabela 9: Parametry powłoki (trwałość)
MP 20x8x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 20x8x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 688 Mx | 156.9 µWb |
| Współczynnik Pc | 1.14 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 20x8x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.22 kg | Standard |
| Woda (dno rzeki) |
8.27 kg
(+1.05 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.14
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z użyciem blachy ze miękkiej stali, która służy jako idealny przewodnik strumienia
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (między magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Bezpieczna praca z magnesami neodymowymi
Ryzyko pożaru
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Utrata mocy w cieple
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie dla nawigacji
Ważna informacja: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Alergia na nikiel
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Chronić przed dziećmi
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Implanty kardiologiczne
Pacjenci z stymulatorem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zakłócić działanie implantu.
