MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030188
GTIN/EAN: 5906301812050
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
9.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.82 kg / 57.06 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
3.80 ZŁ z VAT / szt. + cena za transport
3.09 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie daj znać przez
nasz formularz online
na stronie kontakt.
Udźwig a także budowę elementów magnetycznych zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030188 |
| GTIN/EAN | 5906301812050 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 9.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.82 kg / 57.06 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Niniejsze informacje stanowią bezpośredni efekt analizy fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MP 20x8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
średnie ryzyko |
| 1 mm |
5321 Gs
532.1 mT
|
4.71 kg / 10.38 lbs
4707.4 g / 46.2 N
|
średnie ryzyko |
| 2 mm |
4736 Gs
473.6 mT
|
3.73 kg / 8.22 lbs
3729.5 g / 36.6 N
|
średnie ryzyko |
| 3 mm |
4184 Gs
418.4 mT
|
2.91 kg / 6.42 lbs
2910.0 g / 28.5 N
|
średnie ryzyko |
| 5 mm |
3216 Gs
321.6 mT
|
1.72 kg / 3.79 lbs
1719.3 g / 16.9 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.45 kg / 1.00 lbs
452.4 g / 4.4 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.14 kg / 0.30 lbs
136.8 g / 1.3 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.05 kg / 0.11 lbs
49.2 g / 0.5 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 20x8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.16 kg / 2.57 lbs
1164.0 g / 11.4 N
|
| 1 mm | Stal (~0.2) |
0.94 kg / 2.08 lbs
942.0 g / 9.2 N
|
| 2 mm | Stal (~0.2) |
0.75 kg / 1.64 lbs
746.0 g / 7.3 N
|
| 3 mm | Stal (~0.2) |
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 20x8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.75 kg / 3.85 lbs
1746.0 g / 17.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.16 kg / 2.57 lbs
1164.0 g / 11.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.91 kg / 6.42 lbs
2910.0 g / 28.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 20x8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 1.28 lbs
582.0 g / 5.7 N
|
| 1 mm |
|
1.46 kg / 3.21 lbs
1455.0 g / 14.3 N
|
| 2 mm |
|
2.91 kg / 6.42 lbs
2910.0 g / 28.5 N
|
| 3 mm |
|
4.37 kg / 9.62 lbs
4365.0 g / 42.8 N
|
| 5 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
| 10 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
| 11 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
| 12 mm |
|
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MP 20x8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.82 kg / 12.83 lbs
5820.0 g / 57.1 N
|
OK |
| 40 °C | -2.2% |
5.69 kg / 12.55 lbs
5692.0 g / 55.8 N
|
OK |
| 60 °C | -4.4% |
5.56 kg / 12.27 lbs
5563.9 g / 54.6 N
|
OK |
| 80 °C | -6.6% |
5.44 kg / 11.98 lbs
5435.9 g / 53.3 N
|
|
| 100 °C | -28.8% |
4.14 kg / 9.14 lbs
4143.8 g / 40.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 20x8x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.03 kg / 119.11 lbs
6 121 Gs
|
8.10 kg / 17.87 lbs
8104 g / 79.5 N
|
N/A |
| 1 mm |
48.76 kg / 107.50 lbs
11 242 Gs
|
7.31 kg / 16.13 lbs
7314 g / 71.8 N
|
43.89 kg / 96.75 lbs
~0 Gs
|
| 2 mm |
43.70 kg / 96.34 lbs
10 642 Gs
|
6.55 kg / 14.45 lbs
6555 g / 64.3 N
|
39.33 kg / 86.71 lbs
~0 Gs
|
| 3 mm |
38.98 kg / 85.94 lbs
10 051 Gs
|
5.85 kg / 12.89 lbs
5847 g / 57.4 N
|
35.08 kg / 77.34 lbs
~0 Gs
|
| 5 mm |
30.63 kg / 67.54 lbs
8 910 Gs
|
4.60 kg / 10.13 lbs
4595 g / 45.1 N
|
27.57 kg / 60.78 lbs
~0 Gs
|
| 10 mm |
15.96 kg / 35.19 lbs
6 432 Gs
|
2.39 kg / 5.28 lbs
2394 g / 23.5 N
|
14.36 kg / 31.67 lbs
~0 Gs
|
| 20 mm |
4.20 kg / 9.26 lbs
3 299 Gs
|
0.63 kg / 1.39 lbs
630 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.42 lbs
702 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.17 kg / 0.38 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.20 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 20x8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 20x8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.61 km/h
(7.11 m/s)
|
0.25 J | |
| 30 mm |
42.40 km/h
(11.78 m/s)
|
0.69 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.14 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.28 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 20x8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 20x8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 20x8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.82 kg | Standard |
| Woda (dno rzeki) |
6.66 kg
(+0.84 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- na bloku wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (brak powłok)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w neutralnych warunkach termicznych
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Ostrzeżenia
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Dla uczulonych
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Nie wierć w magnesach
Pył generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Siła zgniatająca
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Bezpieczna praca
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.
Magnesy są kruche
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
