MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030188
GTIN/EAN: 5906301812050
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
9.9 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.82 kg / 57.06 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
3.80 ZŁ z VAT / szt. + cena za transport
3.09 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo pisz przez
formularz
na stronie kontakt.
Parametry a także wygląd magnesu wyliczysz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne - MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030188 |
| GTIN/EAN | 5906301812050 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 9.9 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.82 kg / 57.06 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Niniejsze informacje są rezultat symulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MP 20x8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
5.82 kg / 5820.0 g
57.1 N
|
mocny |
| 1 mm |
5321 Gs
532.1 mT
|
4.71 kg / 4707.4 g
46.2 N
|
mocny |
| 2 mm |
4736 Gs
473.6 mT
|
3.73 kg / 3729.5 g
36.6 N
|
mocny |
| 3 mm |
4184 Gs
418.4 mT
|
2.91 kg / 2910.0 g
28.5 N
|
mocny |
| 5 mm |
3216 Gs
321.6 mT
|
1.72 kg / 1719.3 g
16.9 N
|
słaby uchwyt |
| 10 mm |
1650 Gs
165.0 mT
|
0.45 kg / 452.4 g
4.4 N
|
słaby uchwyt |
| 15 mm |
907 Gs
90.7 mT
|
0.14 kg / 136.8 g
1.3 N
|
słaby uchwyt |
| 20 mm |
544 Gs
54.4 mT
|
0.05 kg / 49.2 g
0.5 N
|
słaby uchwyt |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 9.6 g
0.1 N
|
słaby uchwyt |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.9 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MP 20x8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.16 kg / 1164.0 g
11.4 N
|
| 1 mm | Stal (~0.2) |
0.94 kg / 942.0 g
9.2 N
|
| 2 mm | Stal (~0.2) |
0.75 kg / 746.0 g
7.3 N
|
| 3 mm | Stal (~0.2) |
0.58 kg / 582.0 g
5.7 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 344.0 g
3.4 N
|
| 10 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 20x8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.75 kg / 1746.0 g
17.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.16 kg / 1164.0 g
11.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.58 kg / 582.0 g
5.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.91 kg / 2910.0 g
28.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 20x8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 582.0 g
5.7 N
|
| 1 mm |
|
1.46 kg / 1455.0 g
14.3 N
|
| 2 mm |
|
2.91 kg / 2910.0 g
28.5 N
|
| 5 mm |
|
5.82 kg / 5820.0 g
57.1 N
|
| 10 mm |
|
5.82 kg / 5820.0 g
57.1 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MP 20x8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.82 kg / 5820.0 g
57.1 N
|
OK |
| 40 °C | -2.2% |
5.69 kg / 5692.0 g
55.8 N
|
OK |
| 60 °C | -4.4% |
5.56 kg / 5563.9 g
54.6 N
|
OK |
| 80 °C | -6.6% |
5.44 kg / 5435.9 g
53.3 N
|
|
| 100 °C | -28.8% |
4.14 kg / 4143.8 g
40.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 20x8x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
54.03 kg / 54028 g
530.0 N
6 121 Gs
|
N/A |
| 1 mm |
48.76 kg / 48762 g
478.4 N
11 242 Gs
|
43.89 kg / 43886 g
430.5 N
~0 Gs
|
| 2 mm |
43.70 kg / 43700 g
428.7 N
10 642 Gs
|
39.33 kg / 39330 g
385.8 N
~0 Gs
|
| 3 mm |
38.98 kg / 38980 g
382.4 N
10 051 Gs
|
35.08 kg / 35082 g
344.2 N
~0 Gs
|
| 5 mm |
30.63 kg / 30634 g
300.5 N
8 910 Gs
|
27.57 kg / 27570 g
270.5 N
~0 Gs
|
| 10 mm |
15.96 kg / 15961 g
156.6 N
6 432 Gs
|
14.36 kg / 14365 g
140.9 N
~0 Gs
|
| 20 mm |
4.20 kg / 4200 g
41.2 N
3 299 Gs
|
3.78 kg / 3780 g
37.1 N
~0 Gs
|
| 50 mm |
0.19 kg / 190 g
1.9 N
702 Gs
|
0.17 kg / 171 g
1.7 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 20x8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MP 20x8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.61 km/h
(7.11 m/s)
|
0.25 J | |
| 30 mm |
42.40 km/h
(11.78 m/s)
|
0.69 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.14 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.28 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 20x8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 20x8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 20x8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.82 kg | Standard |
| Woda (dno rzeki) |
6.66 kg
(+0.84 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- przy kontakcie z zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Udźwig w praktyce – czynniki wpływu
- Dystans (między magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Interferencja magnetyczna
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Interferencja medyczna
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Uczulenie na powłokę
Niektóre osoby wykazuje alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może skutkować zaczerwienienie skóry. Wskazane jest używanie rękawiczek ochronnych.
Potężne pole
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
