MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030186
GTIN/EAN: 5906301812036
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.04 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.49 kg / 63.68 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
2.76 ZŁ z VAT / szt. + cena za transport
2.24 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie napisz przez
formularz
na naszej stronie.
Udźwig oraz wygląd magnesów przetestujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 20x5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030186 |
| GTIN/EAN | 5906301812036 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.04 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.49 kg / 63.68 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe wartości stanowią bezpośredni efekt symulacji matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
MP 20x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
6.49 kg / 6490.0 g
63.7 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
5.25 kg / 5249.3 g
51.5 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
4.16 kg / 4158.8 g
40.8 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
3.25 kg / 3245.0 g
31.8 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
1.92 kg / 1917.2 g
18.8 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.50 kg / 504.5 g
4.9 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.15 kg / 152.6 g
1.5 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.05 kg / 54.9 g
0.5 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 10.7 g
0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 1.0 g
0.0 N
|
niskie ryzyko |
MP 20x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.30 kg / 1298.0 g
12.7 N
|
| 1 mm | Stal (~0.2) |
1.05 kg / 1050.0 g
10.3 N
|
| 2 mm | Stal (~0.2) |
0.83 kg / 832.0 g
8.2 N
|
| 3 mm | Stal (~0.2) |
0.65 kg / 650.0 g
6.4 N
|
| 5 mm | Stal (~0.2) |
0.38 kg / 384.0 g
3.8 N
|
| 10 mm | Stal (~0.2) |
0.10 kg / 100.0 g
1.0 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 20x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.95 kg / 1947.0 g
19.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.30 kg / 1298.0 g
12.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.65 kg / 649.0 g
6.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.25 kg / 3245.0 g
31.8 N
|
MP 20x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.65 kg / 649.0 g
6.4 N
|
| 1 mm |
|
1.62 kg / 1622.5 g
15.9 N
|
| 2 mm |
|
3.25 kg / 3245.0 g
31.8 N
|
| 5 mm |
|
6.49 kg / 6490.0 g
63.7 N
|
| 10 mm |
|
6.49 kg / 6490.0 g
63.7 N
|
MP 20x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.49 kg / 6490.0 g
63.7 N
|
OK |
| 40 °C | -2.2% |
6.35 kg / 6347.2 g
62.3 N
|
OK |
| 60 °C | -4.4% |
6.20 kg / 6204.4 g
60.9 N
|
OK |
| 80 °C | -6.6% |
6.06 kg / 6061.7 g
59.5 N
|
|
| 100 °C | -28.8% |
4.62 kg / 4620.9 g
45.3 N
|
MP 20x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
54.03 kg / 54028 g
530.0 N
6 121 Gs
|
N/A |
| 1 mm |
48.76 kg / 48762 g
478.4 N
11 242 Gs
|
43.89 kg / 43886 g
430.5 N
~0 Gs
|
| 2 mm |
43.70 kg / 43700 g
428.7 N
10 642 Gs
|
39.33 kg / 39330 g
385.8 N
~0 Gs
|
| 3 mm |
38.98 kg / 38980 g
382.4 N
10 051 Gs
|
35.08 kg / 35082 g
344.2 N
~0 Gs
|
| 5 mm |
30.63 kg / 30634 g
300.5 N
8 910 Gs
|
27.57 kg / 27570 g
270.5 N
~0 Gs
|
| 10 mm |
15.96 kg / 15961 g
156.6 N
6 432 Gs
|
14.36 kg / 14365 g
140.9 N
~0 Gs
|
| 20 mm |
4.20 kg / 4200 g
41.2 N
3 299 Gs
|
3.78 kg / 3780 g
37.1 N
~0 Gs
|
| 50 mm |
0.19 kg / 190 g
1.9 N
702 Gs
|
0.17 kg / 171 g
1.7 N
~0 Gs
|
MP 20x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MP 20x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.61 km/h
(7.11 m/s)
|
0.28 J | |
| 30 mm |
42.40 km/h
(11.78 m/s)
|
0.77 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.27 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.55 J |
MP 20x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 20x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
MP 20x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.49 kg | Standard |
| Woda (dno rzeki) |
7.43 kg
(+0.94 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- w warunkach idealnego przylegania (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina – występowanie ciała obcego (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza nośność.
Karty i dyski
Bardzo silne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Łamliwość magnesów
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Nadwrażliwość na metale
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Pył jest łatwopalny
Proszek powstający podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uwaga medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Przegrzanie magnesu
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Wpływ na smartfony
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
To nie jest zabawka
Neodymowe magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
