MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030182
GTIN/EAN: 5906301811992
Średnica
15 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.76 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.71 kg / 26.61 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.747 ZŁ z VAT / szt. + cena za transport
1.420 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie daj znać za pomocą
nasz formularz online
na stronie kontaktowej.
Masę oraz kształt elementów magnetycznych obliczysz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030182 |
| GTIN/EAN | 5906301811992 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 15 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.76 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.71 kg / 26.61 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe informacje są wynik analizy fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MP 15x7/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
średnie ryzyko |
| 1 mm |
1833 Gs
183.3 mT
|
2.29 kg / 5.05 lbs
2289.1 g / 22.5 N
|
średnie ryzyko |
| 2 mm |
1618 Gs
161.8 mT
|
1.78 kg / 3.93 lbs
1784.1 g / 17.5 N
|
niskie ryzyko |
| 3 mm |
1385 Gs
138.5 mT
|
1.31 kg / 2.88 lbs
1307.5 g / 12.8 N
|
niskie ryzyko |
| 5 mm |
959 Gs
95.9 mT
|
0.63 kg / 1.38 lbs
627.1 g / 6.2 N
|
niskie ryzyko |
| 10 mm |
362 Gs
36.2 mT
|
0.09 kg / 0.20 lbs
89.3 g / 0.9 N
|
niskie ryzyko |
| 15 mm |
156 Gs
15.6 mT
|
0.02 kg / 0.04 lbs
16.5 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MP 15x7/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| 1 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 0.78 lbs
356.0 g / 3.5 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 15x7/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.81 kg / 1.79 lbs
813.0 g / 8.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 15x7/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| 1 mm |
|
0.68 kg / 1.49 lbs
677.5 g / 6.6 N
|
| 2 mm |
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
| 3 mm |
|
2.03 kg / 4.48 lbs
2032.5 g / 19.9 N
|
| 5 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 10 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 11 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 12 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MP 15x7/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
OK |
| 40 °C | -2.2% |
2.65 kg / 5.84 lbs
2650.4 g / 26.0 N
|
OK |
| 60 °C | -4.4% |
2.59 kg / 5.71 lbs
2590.8 g / 25.4 N
|
|
| 80 °C | -6.6% |
2.53 kg / 5.58 lbs
2531.1 g / 24.8 N
|
|
| 100 °C | -28.8% |
1.93 kg / 4.25 lbs
1929.5 g / 18.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 15x7/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.48 kg / 7.68 lbs
3 483 Gs
|
0.52 kg / 1.15 lbs
523 g / 5.1 N
|
N/A |
| 1 mm |
3.24 kg / 7.14 lbs
3 846 Gs
|
0.49 kg / 1.07 lbs
486 g / 4.8 N
|
2.91 kg / 6.43 lbs
~0 Gs
|
| 2 mm |
2.94 kg / 6.49 lbs
3 666 Gs
|
0.44 kg / 0.97 lbs
441 g / 4.3 N
|
2.65 kg / 5.84 lbs
~0 Gs
|
| 3 mm |
2.62 kg / 5.78 lbs
3 460 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 5 mm |
1.98 kg / 4.36 lbs
3 004 Gs
|
0.30 kg / 0.65 lbs
296 g / 2.9 N
|
1.78 kg / 3.92 lbs
~0 Gs
|
| 10 mm |
0.81 kg / 1.78 lbs
1 919 Gs
|
0.12 kg / 0.27 lbs
121 g / 1.2 N
|
0.73 kg / 1.60 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.25 lbs
724 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
88 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 15x7/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 15x7/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.63 km/h
(7.67 m/s)
|
0.11 J | |
| 30 mm |
46.90 km/h
(13.03 m/s)
|
0.32 J | |
| 50 mm |
60.54 km/h
(16.82 m/s)
|
0.53 J | |
| 100 mm |
85.62 km/h
(23.78 m/s)
|
1.06 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 15x7/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 15x7/3.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 461 Mx | 34.6 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 15x7/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.71 kg | Standard |
| Woda (dno rzeki) |
3.10 kg
(+0.39 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki powłoce (NiCuNi, Au, srebro) mają nowoczesny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z użyciem blachy ze miękkiej stali, która służy jako element zamykający obwód
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig określano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp między magnesem, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Alergia na nikiel
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Ochrona urządzeń
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Rozruszniki serca
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Niebezpieczeństwo przytrzaśnięcia
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa silne magnesy.
Produkt nie dla dzieci
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Uwaga na odpryski
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Zasady obsługi
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
