MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030182
GTIN/EAN: 5906301811992
Średnica
15 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.76 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.71 kg / 26.61 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.747 ZŁ z VAT / szt. + cena za transport
1.420 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub daj znać korzystając z
formularz zapytania
na stronie kontakt.
Udźwig i wygląd magnesów neodymowych przetestujesz u nas w
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030182 |
| GTIN/EAN | 5906301811992 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 15 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.76 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.71 kg / 26.61 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione informacje stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MP 15x7/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
średnie ryzyko |
| 1 mm |
1833 Gs
183.3 mT
|
2.29 kg / 5.05 lbs
2289.1 g / 22.5 N
|
średnie ryzyko |
| 2 mm |
1618 Gs
161.8 mT
|
1.78 kg / 3.93 lbs
1784.1 g / 17.5 N
|
bezpieczny |
| 3 mm |
1385 Gs
138.5 mT
|
1.31 kg / 2.88 lbs
1307.5 g / 12.8 N
|
bezpieczny |
| 5 mm |
959 Gs
95.9 mT
|
0.63 kg / 1.38 lbs
627.1 g / 6.2 N
|
bezpieczny |
| 10 mm |
362 Gs
36.2 mT
|
0.09 kg / 0.20 lbs
89.3 g / 0.9 N
|
bezpieczny |
| 15 mm |
156 Gs
15.6 mT
|
0.02 kg / 0.04 lbs
16.5 g / 0.2 N
|
bezpieczny |
| 20 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
bezpieczny |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 15x7/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| 1 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 0.78 lbs
356.0 g / 3.5 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 15x7/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.81 kg / 1.79 lbs
813.0 g / 8.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 15x7/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| 1 mm |
|
0.68 kg / 1.49 lbs
677.5 g / 6.6 N
|
| 2 mm |
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
| 3 mm |
|
2.03 kg / 4.48 lbs
2032.5 g / 19.9 N
|
| 5 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 10 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 11 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 12 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MP 15x7/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
OK |
| 40 °C | -2.2% |
2.65 kg / 5.84 lbs
2650.4 g / 26.0 N
|
OK |
| 60 °C | -4.4% |
2.59 kg / 5.71 lbs
2590.8 g / 25.4 N
|
|
| 80 °C | -6.6% |
2.53 kg / 5.58 lbs
2531.1 g / 24.8 N
|
|
| 100 °C | -28.8% |
1.93 kg / 4.25 lbs
1929.5 g / 18.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MP 15x7/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.48 kg / 7.68 lbs
3 483 Gs
|
0.52 kg / 1.15 lbs
523 g / 5.1 N
|
N/A |
| 1 mm |
3.24 kg / 7.14 lbs
3 846 Gs
|
0.49 kg / 1.07 lbs
486 g / 4.8 N
|
2.91 kg / 6.43 lbs
~0 Gs
|
| 2 mm |
2.94 kg / 6.49 lbs
3 666 Gs
|
0.44 kg / 0.97 lbs
441 g / 4.3 N
|
2.65 kg / 5.84 lbs
~0 Gs
|
| 3 mm |
2.62 kg / 5.78 lbs
3 460 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 5 mm |
1.98 kg / 4.36 lbs
3 004 Gs
|
0.30 kg / 0.65 lbs
296 g / 2.9 N
|
1.78 kg / 3.92 lbs
~0 Gs
|
| 10 mm |
0.81 kg / 1.78 lbs
1 919 Gs
|
0.12 kg / 0.27 lbs
121 g / 1.2 N
|
0.73 kg / 1.60 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.25 lbs
724 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
88 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 15x7/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 15x7/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.63 km/h
(7.67 m/s)
|
0.11 J | |
| 30 mm |
46.90 km/h
(13.03 m/s)
|
0.32 J | |
| 50 mm |
60.54 km/h
(16.82 m/s)
|
0.53 J | |
| 100 mm |
85.62 km/h
(23.78 m/s)
|
1.06 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 15x7/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 15x7/3.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 461 Mx | 34.6 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MP 15x7/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.71 kg | Standard |
| Woda (dno rzeki) |
3.10 kg
(+0.39 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina powietrzna (pomiędzy magnesem a metalem), ponieważ nawet niewielka przerwa (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Masywność podłoża – zbyt cienka płyta nie przyjmuje całego pola, przez co część mocy marnuje się na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Urazy ciała
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Uwaga na odpryski
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Reakcje alergiczne
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.
Samozapłon
Proszek powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uszkodzenia czujników
Ważna informacja: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Zakaz zabawy
Magnesy neodymowe nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Bezpieczna praca
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Karty i dyski
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
