MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030182
GTIN: 5906301811992
Średnica
15 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.76 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.71 kg / 26.61 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.747 ZŁ z VAT / szt. + cena za transport
1.420 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie skontaktuj się korzystając z
formularz zapytania
na stronie kontaktowej.
Siłę oraz kształt magnesów neodymowych testujesz u nas w
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030182 |
| GTIN | 5906301811992 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 15 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.76 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.71 kg / 26.61 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu neodymowego - raport
Przedstawione informacje stanowią rezultat kalkulacji fizycznej. Wyniki oparte są na modelach dla klasy NdFeB. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
MP 15x7/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
2.71 kg / 2710.0 g
26.6 N
|
średnie ryzyko |
| 1 mm |
1833 Gs
183.3 mT
|
2.29 kg / 2289.1 g
22.5 N
|
średnie ryzyko |
| 2 mm |
1618 Gs
161.8 mT
|
1.78 kg / 1784.1 g
17.5 N
|
niskie ryzyko |
| 3 mm |
1385 Gs
138.5 mT
|
1.31 kg / 1307.5 g
12.8 N
|
niskie ryzyko |
| 5 mm |
959 Gs
95.9 mT
|
0.63 kg / 627.1 g
6.2 N
|
niskie ryzyko |
| 10 mm |
362 Gs
36.2 mT
|
0.09 kg / 89.3 g
0.9 N
|
niskie ryzyko |
| 15 mm |
156 Gs
15.6 mT
|
0.02 kg / 16.5 g
0.2 N
|
niskie ryzyko |
| 20 mm |
78 Gs
7.8 mT
|
0.00 kg / 4.1 g
0.0 N
|
niskie ryzyko |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.5 g
0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MP 15x7/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.54 kg / 542.0 g
5.3 N
|
| 1 mm | Stal (~0.2) |
0.46 kg / 458.0 g
4.5 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 356.0 g
3.5 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 262.0 g
2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 126.0 g
1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 15x7/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.81 kg / 813.0 g
8.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.54 kg / 542.0 g
5.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.27 kg / 271.0 g
2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.36 kg / 1355.0 g
13.3 N
|
MP 15x7/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.27 kg / 271.0 g
2.7 N
|
| 1 mm |
|
0.68 kg / 677.5 g
6.6 N
|
| 2 mm |
|
1.36 kg / 1355.0 g
13.3 N
|
| 5 mm |
|
2.71 kg / 2710.0 g
26.6 N
|
| 10 mm |
|
2.71 kg / 2710.0 g
26.6 N
|
MP 15x7/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.71 kg / 2710.0 g
26.6 N
|
OK |
| 40 °C | -2.2% |
2.65 kg / 2650.4 g
26.0 N
|
OK |
| 60 °C | -4.4% |
2.59 kg / 2590.8 g
25.4 N
|
OK |
| 80 °C | -6.6% |
2.53 kg / 2531.1 g
24.8 N
|
|
| 100 °C | -28.8% |
1.93 kg / 1929.5 g
18.9 N
|
MP 15x7/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.06 kg / 4065.0 g
39.9 N
|
N/A |
| 2 mm |
2.67 kg / 2670.0 g
26.2 N
|
2.49 kg / 2492.0 g
24.4 N
|
| 5 mm |
0.95 kg / 945.0 g
9.3 N
|
0.88 kg / 882.0 g
8.7 N
|
| 10 mm |
0.14 kg / 135.0 g
1.3 N
|
0.13 kg / 126.0 g
1.2 N
|
| 20 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
| 50 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
MP 15x7/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MP 15x7/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.63 km/h
(7.67 m/s)
|
0.11 J | |
| 30 mm |
46.90 km/h
(13.03 m/s)
|
0.32 J | |
| 50 mm |
60.54 km/h
(16.82 m/s)
|
0.53 J | |
| 100 mm |
85.62 km/h
(23.78 m/s)
|
1.06 J |
MP 15x7/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 15x7/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.71 kg | Standard |
| Woda (dno rzeki) |
3.10 kg
(+0.39 kg Zysk z wyporności)
|
+14.5% |
Inne oferty
Zalety oraz wady magnesów neodymowych NdFeB.
Magnesy neodymowe to nie tylko siła, ale także inne kluczowe cechy, takie jak::
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Wytrzymałość magnetyczna na maksimum – od czego zależy?
Siła trzymania 2.71 kg jest wynikiem testu laboratoryjnego przeprowadzonego w następującej konfiguracji:
- przy użyciu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
W praktyce, faktyczna siła trzymania jest determinowana przez kilku kluczowych aspektów, które przedstawiamy od najważniejszych:
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Ryzyko uczulenia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Ostrożność wymagana
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Ochrona oczu
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Nie przegrzewaj magnesów
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Chronić przed dziećmi
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Poważne obrażenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zagrożenie!
Dowiedz się więcej o ryzyku w artykule: BHP magnesów z neodymu.
