MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030182
GTIN/EAN: 5906301811992
Średnica
15 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.76 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.71 kg / 26.61 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.747 ZŁ z VAT / szt. + cena za transport
1.420 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie napisz korzystając z
formularz
przez naszą stronę.
Siłę i kształt magnesów obliczysz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane techniczne - MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 15x7/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030182 |
| GTIN/EAN | 5906301811992 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 15 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.76 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.71 kg / 26.61 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Niniejsze dane stanowią bezpośredni efekt kalkulacji matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 15x7/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
uwaga |
| 1 mm |
1833 Gs
183.3 mT
|
2.29 kg / 5.05 lbs
2289.1 g / 22.5 N
|
uwaga |
| 2 mm |
1618 Gs
161.8 mT
|
1.78 kg / 3.93 lbs
1784.1 g / 17.5 N
|
niskie ryzyko |
| 3 mm |
1385 Gs
138.5 mT
|
1.31 kg / 2.88 lbs
1307.5 g / 12.8 N
|
niskie ryzyko |
| 5 mm |
959 Gs
95.9 mT
|
0.63 kg / 1.38 lbs
627.1 g / 6.2 N
|
niskie ryzyko |
| 10 mm |
362 Gs
36.2 mT
|
0.09 kg / 0.20 lbs
89.3 g / 0.9 N
|
niskie ryzyko |
| 15 mm |
156 Gs
15.6 mT
|
0.02 kg / 0.04 lbs
16.5 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 15x7/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| 1 mm | Stal (~0.2) |
0.46 kg / 1.01 lbs
458.0 g / 4.5 N
|
| 2 mm | Stal (~0.2) |
0.36 kg / 0.78 lbs
356.0 g / 3.5 N
|
| 3 mm | Stal (~0.2) |
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MP 15x7/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.81 kg / 1.79 lbs
813.0 g / 8.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.54 kg / 1.19 lbs
542.0 g / 5.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 15x7/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.27 kg / 0.60 lbs
271.0 g / 2.7 N
|
| 1 mm |
|
0.68 kg / 1.49 lbs
677.5 g / 6.6 N
|
| 2 mm |
|
1.36 kg / 2.99 lbs
1355.0 g / 13.3 N
|
| 3 mm |
|
2.03 kg / 4.48 lbs
2032.5 g / 19.9 N
|
| 5 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 10 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 11 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 12 mm |
|
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MP 15x7/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
OK |
| 40 °C | -2.2% |
2.65 kg / 5.84 lbs
2650.4 g / 26.0 N
|
OK |
| 60 °C | -4.4% |
2.59 kg / 5.71 lbs
2590.8 g / 25.4 N
|
|
| 80 °C | -6.6% |
2.53 kg / 5.58 lbs
2531.1 g / 24.8 N
|
|
| 100 °C | -28.8% |
1.93 kg / 4.25 lbs
1929.5 g / 18.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 15x7/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.48 kg / 7.68 lbs
3 483 Gs
|
0.52 kg / 1.15 lbs
523 g / 5.1 N
|
N/A |
| 1 mm |
3.24 kg / 7.14 lbs
3 846 Gs
|
0.49 kg / 1.07 lbs
486 g / 4.8 N
|
2.91 kg / 6.43 lbs
~0 Gs
|
| 2 mm |
2.94 kg / 6.49 lbs
3 666 Gs
|
0.44 kg / 0.97 lbs
441 g / 4.3 N
|
2.65 kg / 5.84 lbs
~0 Gs
|
| 3 mm |
2.62 kg / 5.78 lbs
3 460 Gs
|
0.39 kg / 0.87 lbs
393 g / 3.9 N
|
2.36 kg / 5.20 lbs
~0 Gs
|
| 5 mm |
1.98 kg / 4.36 lbs
3 004 Gs
|
0.30 kg / 0.65 lbs
296 g / 2.9 N
|
1.78 kg / 3.92 lbs
~0 Gs
|
| 10 mm |
0.81 kg / 1.78 lbs
1 919 Gs
|
0.12 kg / 0.27 lbs
121 g / 1.2 N
|
0.73 kg / 1.60 lbs
~0 Gs
|
| 20 mm |
0.11 kg / 0.25 lbs
724 Gs
|
0.02 kg / 0.04 lbs
17 g / 0.2 N
|
0.10 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
88 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 15x7/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 15x7/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.63 km/h
(7.67 m/s)
|
0.11 J | |
| 30 mm |
46.90 km/h
(13.03 m/s)
|
0.32 J | |
| 50 mm |
60.54 km/h
(16.82 m/s)
|
0.53 J | |
| 100 mm |
85.62 km/h
(23.78 m/s)
|
1.06 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 15x7/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 15x7/3.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 461 Mx | 34.6 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 15x7/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.71 kg | Standard |
| Woda (dno rzeki) |
3.10 kg
(+0.39 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – od czego zależy?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość to min. 10 mm
- z powierzchnią idealnie równą
- przy zerowej szczelinie (bez powłok)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – występowanie ciała obcego (farba, taśma, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość podłoża – im równiejsza blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ryzyko pożaru
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Poważne obrażenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Ryzyko uczulenia
Część populacji ma alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać silną reakcję alergiczną. Rekomendujemy używanie rękawiczek ochronnych.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Trzymaj z dala od elektroniki
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Zasady obsługi
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Nie dawać dzieciom
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Niebezpieczeństwo dla rozruszników
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać działanie urządzenia ratującego życie.
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
