MW 14x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010024
GTIN/EAN: 5906301810230
Średnica Ø
14 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.48 kg / 14.50 N
Indukcja magnetyczna
170.27 mT / 1703 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub daj znać za pomocą
formularz
przez naszą stronę.
Parametry i wygląd magnesów zobaczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 14x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010024 |
| GTIN/EAN | 5906301810230 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.48 kg / 14.50 N |
| Indukcja magnetyczna ~ ? | 170.27 mT / 1703 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Niniejsze informacje stanowią rezultat symulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MW 14x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1702 Gs
170.2 mT
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
słaby uchwyt |
| 1 mm |
1565 Gs
156.5 mT
|
1.25 kg / 2.76 lbs
1251.7 g / 12.3 N
|
słaby uchwyt |
| 2 mm |
1373 Gs
137.3 mT
|
0.96 kg / 2.12 lbs
962.5 g / 9.4 N
|
słaby uchwyt |
| 3 mm |
1161 Gs
116.1 mT
|
0.69 kg / 1.52 lbs
688.9 g / 6.8 N
|
słaby uchwyt |
| 5 mm |
780 Gs
78.0 mT
|
0.31 kg / 0.69 lbs
311.0 g / 3.1 N
|
słaby uchwyt |
| 10 mm |
276 Gs
27.6 mT
|
0.04 kg / 0.09 lbs
39.0 g / 0.4 N
|
słaby uchwyt |
| 15 mm |
115 Gs
11.5 mT
|
0.01 kg / 0.01 lbs
6.7 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
56 Gs
5.6 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 14x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 2 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 14x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.44 kg / 0.98 lbs
444.0 g / 4.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 14x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 1 mm |
|
0.37 kg / 0.82 lbs
370.0 g / 3.6 N
|
| 2 mm |
|
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
| 3 mm |
|
1.11 kg / 2.45 lbs
1110.0 g / 10.9 N
|
| 5 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
| 10 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
| 11 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
| 12 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 14x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
OK |
| 40 °C | -2.2% |
1.45 kg / 3.19 lbs
1447.4 g / 14.2 N
|
OK |
| 60 °C | -4.4% |
1.41 kg / 3.12 lbs
1414.9 g / 13.9 N
|
|
| 80 °C | -6.6% |
1.38 kg / 3.05 lbs
1382.3 g / 13.6 N
|
|
| 100 °C | -28.8% |
1.05 kg / 2.32 lbs
1053.8 g / 10.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 14x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.75 kg / 6.06 lbs
3 073 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.0 N
|
N/A |
| 1 mm |
2.56 kg / 5.65 lbs
3 287 Gs
|
0.38 kg / 0.85 lbs
385 g / 3.8 N
|
2.31 kg / 5.09 lbs
~0 Gs
|
| 2 mm |
2.33 kg / 5.13 lbs
3 131 Gs
|
0.35 kg / 0.77 lbs
349 g / 3.4 N
|
2.09 kg / 4.61 lbs
~0 Gs
|
| 3 mm |
2.06 kg / 4.54 lbs
2 947 Gs
|
0.31 kg / 0.68 lbs
309 g / 3.0 N
|
1.85 kg / 4.09 lbs
~0 Gs
|
| 5 mm |
1.52 kg / 3.36 lbs
2 535 Gs
|
0.23 kg / 0.50 lbs
229 g / 2.2 N
|
1.37 kg / 3.02 lbs
~0 Gs
|
| 10 mm |
0.58 kg / 1.27 lbs
1 561 Gs
|
0.09 kg / 0.19 lbs
87 g / 0.9 N
|
0.52 kg / 1.15 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.16 lbs
552 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 14x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 14x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.94 km/h
(7.21 m/s)
|
0.06 J | |
| 30 mm |
44.22 km/h
(12.28 m/s)
|
0.17 J | |
| 50 mm |
57.08 km/h
(15.86 m/s)
|
0.29 J | |
| 100 mm |
80.72 km/h
(22.42 m/s)
|
0.58 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 14x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 14x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 247 Mx | 32.5 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 14x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.48 kg | Standard |
| Woda (dno rzeki) |
1.69 kg
(+0.21 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (metal do metalu)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w neutralnych warunkach termicznych
Praktyczny udźwig: czynniki wpływające
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda płyta nie zamyka strumienia, przez co część mocy jest tracona na drugą stronę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Świadome użytkowanie
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Nie dawać dzieciom
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Nadwrażliwość na metale
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Bezpieczny dystans
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Ryzyko pożaru
Pył generowany podczas obróbki magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Kruchy spiek
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Zagrożenie życia
Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
