MW 14x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010024
GTIN/EAN: 5906301810230
Średnica Ø
14 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.48 kg / 14.50 N
Indukcja magnetyczna
170.27 mT / 1703 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie daj znać korzystając z
formularz zapytania
na naszej stronie.
Udźwig i wygląd magnesów zweryfikujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MW 14x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010024 |
| GTIN/EAN | 5906301810230 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.48 kg / 14.50 N |
| Indukcja magnetyczna ~ ? | 170.27 mT / 1703 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Przedstawione informacje są rezultat kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 14x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1702 Gs
170.2 mT
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
słaby uchwyt |
| 1 mm |
1565 Gs
156.5 mT
|
1.25 kg / 2.76 lbs
1251.7 g / 12.3 N
|
słaby uchwyt |
| 2 mm |
1373 Gs
137.3 mT
|
0.96 kg / 2.12 lbs
962.5 g / 9.4 N
|
słaby uchwyt |
| 3 mm |
1161 Gs
116.1 mT
|
0.69 kg / 1.52 lbs
688.9 g / 6.8 N
|
słaby uchwyt |
| 5 mm |
780 Gs
78.0 mT
|
0.31 kg / 0.69 lbs
311.0 g / 3.1 N
|
słaby uchwyt |
| 10 mm |
276 Gs
27.6 mT
|
0.04 kg / 0.09 lbs
39.0 g / 0.4 N
|
słaby uchwyt |
| 15 mm |
115 Gs
11.5 mT
|
0.01 kg / 0.01 lbs
6.7 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
56 Gs
5.6 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 14x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
250.0 g / 2.5 N
|
| 2 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
138.0 g / 1.4 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 14x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.44 kg / 0.98 lbs
444.0 g / 4.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 14x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 1 mm |
|
0.37 kg / 0.82 lbs
370.0 g / 3.6 N
|
| 2 mm |
|
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
|
| 3 mm |
|
1.11 kg / 2.45 lbs
1110.0 g / 10.9 N
|
| 5 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
| 10 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
| 11 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
| 12 mm |
|
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 14x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.48 kg / 3.26 lbs
1480.0 g / 14.5 N
|
OK |
| 40 °C | -2.2% |
1.45 kg / 3.19 lbs
1447.4 g / 14.2 N
|
OK |
| 60 °C | -4.4% |
1.41 kg / 3.12 lbs
1414.9 g / 13.9 N
|
|
| 80 °C | -6.6% |
1.38 kg / 3.05 lbs
1382.3 g / 13.6 N
|
|
| 100 °C | -28.8% |
1.05 kg / 2.32 lbs
1053.8 g / 10.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 14x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.75 kg / 6.06 lbs
3 073 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.0 N
|
N/A |
| 1 mm |
2.56 kg / 5.65 lbs
3 287 Gs
|
0.38 kg / 0.85 lbs
385 g / 3.8 N
|
2.31 kg / 5.09 lbs
~0 Gs
|
| 2 mm |
2.33 kg / 5.13 lbs
3 131 Gs
|
0.35 kg / 0.77 lbs
349 g / 3.4 N
|
2.09 kg / 4.61 lbs
~0 Gs
|
| 3 mm |
2.06 kg / 4.54 lbs
2 947 Gs
|
0.31 kg / 0.68 lbs
309 g / 3.0 N
|
1.85 kg / 4.09 lbs
~0 Gs
|
| 5 mm |
1.52 kg / 3.36 lbs
2 535 Gs
|
0.23 kg / 0.50 lbs
229 g / 2.2 N
|
1.37 kg / 3.02 lbs
~0 Gs
|
| 10 mm |
0.58 kg / 1.27 lbs
1 561 Gs
|
0.09 kg / 0.19 lbs
87 g / 0.9 N
|
0.52 kg / 1.15 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.16 lbs
552 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 14x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 14x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.94 km/h
(7.21 m/s)
|
0.06 J | |
| 30 mm |
44.22 km/h
(12.28 m/s)
|
0.17 J | |
| 50 mm |
57.08 km/h
(15.86 m/s)
|
0.29 J | |
| 100 mm |
80.72 km/h
(22.42 m/s)
|
0.58 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 14x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 14x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 247 Mx | 32.5 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 14x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.48 kg | Standard |
| Woda (dno rzeki) |
1.69 kg
(+0.21 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z użyciem blachy ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- z powierzchnią idealnie równą
- przy całkowitym braku odstępu (bez powłok)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
BHP przy magnesach
Dla uczulonych
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Uwaga: zadławienie
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Zasady obsługi
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Bezpieczny dystans
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Uszkodzenia ciała
Silne magnesy mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Ryzyko pożaru
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zakłócenia GPS i telefonów
Silne pole magnetyczne destabilizuje działanie magnetometrów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Kruchość materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Temperatura pracy
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
