MW 6x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010092
GTIN/EAN: 5906301810919
Średnica Ø
6 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.42 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.86 kg / 8.43 N
Indukcja magnetyczna
343.37 mT / 3434 Gs
Powłoka
[NiCuNi] nikiel
0.246 ZŁ z VAT / szt. + cena za transport
0.200 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz trudności w wyborze?
Zadzwoń do nas
+48 22 499 98 98
lub zostaw wiadomość poprzez
formularz kontaktowy
w sekcji kontakt.
Udźwig i budowę magnesów przetestujesz dzięki naszemu
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 6x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 6x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010092 |
| GTIN/EAN | 5906301810919 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 6 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.42 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.86 kg / 8.43 N |
| Indukcja magnetyczna ~ ? | 343.37 mT / 3434 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Poniższe wartości są bezpośredni efekt analizy fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
MW 6x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3430 Gs
343.0 mT
|
0.86 kg / 860.0 g
8.4 N
|
słaby uchwyt |
| 1 mm |
2423 Gs
242.3 mT
|
0.43 kg / 429.2 g
4.2 N
|
słaby uchwyt |
| 2 mm |
1521 Gs
152.1 mT
|
0.17 kg / 169.0 g
1.7 N
|
słaby uchwyt |
| 3 mm |
932 Gs
93.2 mT
|
0.06 kg / 63.5 g
0.6 N
|
słaby uchwyt |
| 5 mm |
382 Gs
38.2 mT
|
0.01 kg / 10.7 g
0.1 N
|
słaby uchwyt |
| 10 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.4 g
0.0 N
|
słaby uchwyt |
| 15 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 6x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 1 mm | Stal (~0.2) |
0.09 kg / 86.0 g
0.8 N
|
| 2 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 6x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.26 kg / 258.0 g
2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 172.0 g
1.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.09 kg / 86.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.43 kg / 430.0 g
4.2 N
|
MW 6x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.09 kg / 86.0 g
0.8 N
|
| 1 mm |
|
0.22 kg / 215.0 g
2.1 N
|
| 2 mm |
|
0.43 kg / 430.0 g
4.2 N
|
| 5 mm |
|
0.86 kg / 860.0 g
8.4 N
|
| 10 mm |
|
0.86 kg / 860.0 g
8.4 N
|
MW 6x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.86 kg / 860.0 g
8.4 N
|
OK |
| 40 °C | -2.2% |
0.84 kg / 841.1 g
8.3 N
|
OK |
| 60 °C | -4.4% |
0.82 kg / 822.2 g
8.1 N
|
|
| 80 °C | -6.6% |
0.80 kg / 803.2 g
7.9 N
|
|
| 100 °C | -28.8% |
0.61 kg / 612.3 g
6.0 N
|
MW 6x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.05 kg / 2051 g
20.1 N
4 944 Gs
|
N/A |
| 1 mm |
1.52 kg / 1517 g
14.9 N
5 900 Gs
|
1.37 kg / 1365 g
13.4 N
~0 Gs
|
| 2 mm |
1.02 kg / 1024 g
10.0 N
4 847 Gs
|
0.92 kg / 921 g
9.0 N
~0 Gs
|
| 3 mm |
0.65 kg / 652 g
6.4 N
3 869 Gs
|
0.59 kg / 587 g
5.8 N
~0 Gs
|
| 5 mm |
0.25 kg / 247 g
2.4 N
2 379 Gs
|
0.22 kg / 222 g
2.2 N
~0 Gs
|
| 10 mm |
0.03 kg / 25 g
0.2 N
764 Gs
|
0.02 kg / 23 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
153 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
12 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 6x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 6x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
45.65 km/h
(12.68 m/s)
|
0.03 J | |
| 30 mm |
79.04 km/h
(21.96 m/s)
|
0.10 J | |
| 50 mm |
102.04 km/h
(28.35 m/s)
|
0.17 J | |
| 100 mm |
144.31 km/h
(40.09 m/s)
|
0.34 J |
MW 6x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 6x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 029 Mx | 10.3 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
MW 6x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.86 kg | Standard |
| Woda (dno rzeki) |
0.98 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- o wypolerowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
Zagrożenie wybuchem pyłu
Pył powstający podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
To nie jest zabawka
Bezwzględnie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Wpływ na smartfony
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Kruchy spiek
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Dla uczulonych
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Siła neodymu
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
