MW 5x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010089
GTIN/EAN: 5906301810889
Średnica Ø
5 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
0.59 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.84 kg / 8.26 N
Indukcja magnetyczna
524.45 mT / 5244 Gs
Powłoka
[NiCuNi] nikiel
0.369 ZŁ z VAT / szt. + cena za transport
0.300 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie skontaktuj się poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Udźwig i wygląd elementów magnetycznych zweryfikujesz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MW 5x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010089 |
| GTIN/EAN | 5906301810889 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 0.59 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.84 kg / 8.26 N |
| Indukcja magnetyczna ~ ? | 524.45 mT / 5244 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione informacje stanowią rezultat kalkulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 5x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5236 Gs
523.6 mT
|
0.84 kg / 840.0 g
8.2 N
|
niskie ryzyko |
| 1 mm |
3243 Gs
324.3 mT
|
0.32 kg / 322.1 g
3.2 N
|
niskie ryzyko |
| 2 mm |
1850 Gs
185.0 mT
|
0.10 kg / 104.8 g
1.0 N
|
niskie ryzyko |
| 3 mm |
1076 Gs
107.6 mT
|
0.04 kg / 35.5 g
0.3 N
|
niskie ryzyko |
| 5 mm |
428 Gs
42.8 mT
|
0.01 kg / 5.6 g
0.1 N
|
niskie ryzyko |
| 10 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 15 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 5x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 20.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 5x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 252.0 g
2.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.17 kg / 168.0 g
1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 84.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.42 kg / 420.0 g
4.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 5x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 84.0 g
0.8 N
|
| 1 mm |
|
0.21 kg / 210.0 g
2.1 N
|
| 2 mm |
|
0.42 kg / 420.0 g
4.1 N
|
| 5 mm |
|
0.84 kg / 840.0 g
8.2 N
|
| 10 mm |
|
0.84 kg / 840.0 g
8.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 5x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.84 kg / 840.0 g
8.2 N
|
OK |
| 40 °C | -2.2% |
0.82 kg / 821.5 g
8.1 N
|
OK |
| 60 °C | -4.4% |
0.80 kg / 803.0 g
7.9 N
|
OK |
| 80 °C | -6.6% |
0.78 kg / 784.6 g
7.7 N
|
|
| 100 °C | -28.8% |
0.60 kg / 598.1 g
5.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 5x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.32 kg / 3319 g
32.6 N
5 894 Gs
|
N/A |
| 1 mm |
2.14 kg / 2139 g
21.0 N
8 408 Gs
|
1.93 kg / 1925 g
18.9 N
~0 Gs
|
| 2 mm |
1.27 kg / 1273 g
12.5 N
6 486 Gs
|
1.15 kg / 1146 g
11.2 N
~0 Gs
|
| 3 mm |
0.73 kg / 729 g
7.2 N
4 909 Gs
|
0.66 kg / 656 g
6.4 N
~0 Gs
|
| 5 mm |
0.24 kg / 238 g
2.3 N
2 805 Gs
|
0.21 kg / 214 g
2.1 N
~0 Gs
|
| 10 mm |
0.02 kg / 22 g
0.2 N
857 Gs
|
0.02 kg / 20 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
177 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 5x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 5x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
38.06 km/h
(10.57 m/s)
|
0.03 J | |
| 30 mm |
65.91 km/h
(18.31 m/s)
|
0.10 J | |
| 50 mm |
85.09 km/h
(23.64 m/s)
|
0.16 J | |
| 100 mm |
120.34 km/h
(33.43 m/s)
|
0.33 J |
Tabela 9: Odporność na korozję
MW 5x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 5x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 046 Mx | 10.5 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.84 kg | Standard |
| Woda (dno rzeki) |
0.96 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z zastosowaniem podłoża ze miękkiej stali, która służy jako idealny przewodnik strumienia
- której wymiar poprzeczny wynosi ok. 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Ostrzeżenie dla alergików
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Łamliwość magnesów
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Interferencja medyczna
Pacjenci z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Poważne obrażenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Ryzyko połknięcia
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Świadome użytkowanie
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Zakłócenia GPS i telefonów
Ważna informacja: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Bezpieczny dystans
Bardzo silne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
