MW 5x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010088
GTIN/EAN: 5906301810872
Średnica Ø
5 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
4.42 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.45 kg / 4.40 N
Indukcja magnetyczna
616.32 mT / 6163 Gs
Powłoka
[NiCuNi] nikiel
3.57 ZŁ z VAT / szt. + cena za transport
2.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Dzwoń do nas
+48 22 499 98 98
alternatywnie daj znać za pomocą
formularz zapytania
w sekcji kontakt.
Masę a także kształt magnesów obliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 5x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 5x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010088 |
| GTIN/EAN | 5906301810872 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 4.42 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.45 kg / 4.40 N |
| Indukcja magnetyczna ~ ? | 616.32 mT / 6163 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe informacje są rezultat symulacji fizycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
MW 5x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6154 Gs
615.4 mT
|
0.45 kg / 450.0 g
4.4 N
|
bezpieczny |
| 1 mm |
3877 Gs
387.7 mT
|
0.18 kg / 178.6 g
1.8 N
|
bezpieczny |
| 2 mm |
2308 Gs
230.8 mT
|
0.06 kg / 63.3 g
0.6 N
|
bezpieczny |
| 3 mm |
1419 Gs
141.9 mT
|
0.02 kg / 23.9 g
0.2 N
|
bezpieczny |
| 5 mm |
639 Gs
63.9 mT
|
0.00 kg / 4.8 g
0.0 N
|
bezpieczny |
| 10 mm |
173 Gs
17.3 mT
|
0.00 kg / 0.4 g
0.0 N
|
bezpieczny |
| 15 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 20 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 5x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 5x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 135.0 g
1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 90.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 45.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 225.0 g
2.2 N
|
MW 5x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 45.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 112.5 g
1.1 N
|
| 2 mm |
|
0.23 kg / 225.0 g
2.2 N
|
| 5 mm |
|
0.45 kg / 450.0 g
4.4 N
|
| 10 mm |
|
0.45 kg / 450.0 g
4.4 N
|
MW 5x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 450.0 g
4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 440.1 g
4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 430.2 g
4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 420.3 g
4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 320.4 g
3.1 N
|
MW 5x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.58 kg / 4584 g
45.0 N
6 170 Gs
|
N/A |
| 1 mm |
2.98 kg / 2982 g
29.3 N
9 927 Gs
|
2.68 kg / 2684 g
26.3 N
~0 Gs
|
| 2 mm |
1.82 kg / 1820 g
17.9 N
7 755 Gs
|
1.64 kg / 1638 g
16.1 N
~0 Gs
|
| 3 mm |
1.08 kg / 1083 g
10.6 N
5 981 Gs
|
0.97 kg / 974 g
9.6 N
~0 Gs
|
| 5 mm |
0.39 kg / 391 g
3.8 N
3 595 Gs
|
0.35 kg / 352 g
3.5 N
~0 Gs
|
| 10 mm |
0.05 kg / 49 g
0.5 N
1 278 Gs
|
0.04 kg / 44 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
346 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
49 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 5x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 5x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
10.18 km/h
(2.83 m/s)
|
0.02 J | |
| 30 mm |
17.63 km/h
(4.90 m/s)
|
0.05 J | |
| 50 mm |
22.75 km/h
(6.32 m/s)
|
0.09 J | |
| 100 mm |
32.18 km/h
(8.94 m/s)
|
0.18 J |
MW 5x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 5x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 468 Mx | 14.7 µWb |
| Współczynnik Pc | 1.59 | Wysoki (Stabilny) |
MW 5x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.45 kg | Standard |
| Woda (dno rzeki) |
0.52 kg
(+0.07 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.59
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi zaledwie ~1% (wg testów).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z zastosowaniem płyty ze stali niskowęglowej, która służy jako element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- o wypolerowanej powierzchni kontaktu
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – obecność ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Poważne obrażenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Niszczenie danych
Potężne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Kruchość materiału
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zagrożenie wybuchem pyłu
Proszek powstający podczas szlifowania magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Uczulenie na powłokę
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Potężne pole
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Implanty kardiologiczne
Osoby z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.
Limity termiczne
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Ryzyko połknięcia
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
