MW 5x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010088
GTIN/EAN: 5906301810872
Średnica Ø
5 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
4.42 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.45 kg / 4.40 N
Indukcja magnetyczna
616.32 mT / 6163 Gs
Powłoka
[NiCuNi] nikiel
3.57 ZŁ z VAT / szt. + cena za transport
2.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo pisz przez
nasz formularz online
na stronie kontakt.
Moc i formę magnesów neodymowych skontrolujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne produktu - MW 5x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010088 |
| GTIN/EAN | 5906301810872 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 4.42 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.45 kg / 4.40 N |
| Indukcja magnetyczna ~ ? | 616.32 mT / 6163 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Poniższe informacje stanowią bezpośredni efekt kalkulacji fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 5x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6154 Gs
615.4 mT
|
0.45 kg / 450.0 g
4.4 N
|
niskie ryzyko |
| 1 mm |
3877 Gs
387.7 mT
|
0.18 kg / 178.6 g
1.8 N
|
niskie ryzyko |
| 2 mm |
2308 Gs
230.8 mT
|
0.06 kg / 63.3 g
0.6 N
|
niskie ryzyko |
| 3 mm |
1419 Gs
141.9 mT
|
0.02 kg / 23.9 g
0.2 N
|
niskie ryzyko |
| 5 mm |
639 Gs
63.9 mT
|
0.00 kg / 4.8 g
0.0 N
|
niskie ryzyko |
| 10 mm |
173 Gs
17.3 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
| 15 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 20 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 5x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 5x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 135.0 g
1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 90.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 45.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 225.0 g
2.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 5x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 45.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 112.5 g
1.1 N
|
| 2 mm |
|
0.23 kg / 225.0 g
2.2 N
|
| 5 mm |
|
0.45 kg / 450.0 g
4.4 N
|
| 10 mm |
|
0.45 kg / 450.0 g
4.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 5x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 450.0 g
4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 440.1 g
4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 430.2 g
4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 420.3 g
4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 320.4 g
3.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 5x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.58 kg / 4584 g
45.0 N
6 170 Gs
|
N/A |
| 1 mm |
2.98 kg / 2982 g
29.3 N
9 927 Gs
|
2.68 kg / 2684 g
26.3 N
~0 Gs
|
| 2 mm |
1.82 kg / 1820 g
17.9 N
7 755 Gs
|
1.64 kg / 1638 g
16.1 N
~0 Gs
|
| 3 mm |
1.08 kg / 1083 g
10.6 N
5 981 Gs
|
0.97 kg / 974 g
9.6 N
~0 Gs
|
| 5 mm |
0.39 kg / 391 g
3.8 N
3 595 Gs
|
0.35 kg / 352 g
3.5 N
~0 Gs
|
| 10 mm |
0.05 kg / 49 g
0.5 N
1 278 Gs
|
0.04 kg / 44 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 4 g
0.0 N
346 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
49 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 5x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 5x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
10.18 km/h
(2.83 m/s)
|
0.02 J | |
| 30 mm |
17.63 km/h
(4.90 m/s)
|
0.05 J | |
| 50 mm |
22.75 km/h
(6.32 m/s)
|
0.09 J | |
| 100 mm |
32.18 km/h
(8.94 m/s)
|
0.18 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 5x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 5x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 468 Mx | 14.7 µWb |
| Współczynnik Pc | 1.59 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.45 kg | Standard |
| Woda (dno rzeki) |
0.52 kg
(+0.07 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.59
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- o wypolerowanej powierzchni kontaktu
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Potężne pole
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Chronić przed dziećmi
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Bezpieczny dystans
Ekstremalne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Uczulenie na powłokę
Niektóre osoby ma uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Zalecamy stosowanie rękawic bezlateksowych.
Nie wierć w magnesach
Proszek generowany podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nie przegrzewaj magnesów
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
