MW 40x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010068
GTIN/EAN: 5906301810674
Średnica Ø
40 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
282.74 g
Kierunek magnesowania
→ diametralny
Udźwig
54.73 kg / 536.88 N
Indukcja magnetyczna
515.71 mT / 5157 Gs
Powłoka
[NiCuNi] nikiel
104.80 ZŁ z VAT / szt. + cena za transport
85.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz korzystając z
formularz
na stronie kontaktowej.
Właściwości oraz budowę magnesu neodymowego testujesz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 40x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010068 |
| GTIN/EAN | 5906301810674 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 282.74 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 54.73 kg / 536.88 N |
| Indukcja magnetyczna ~ ? | 515.71 mT / 5157 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione wartości stanowią wynik symulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MW 40x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5156 Gs
515.6 mT
|
54.73 kg / 54730.0 g
536.9 N
|
krytyczny poziom |
| 1 mm |
4900 Gs
490.0 mT
|
49.43 kg / 49432.0 g
484.9 N
|
krytyczny poziom |
| 2 mm |
4641 Gs
464.1 mT
|
44.33 kg / 44334.0 g
434.9 N
|
krytyczny poziom |
| 3 mm |
4383 Gs
438.3 mT
|
39.54 kg / 39538.7 g
387.9 N
|
krytyczny poziom |
| 5 mm |
3879 Gs
387.9 mT
|
30.98 kg / 30981.5 g
303.9 N
|
krytyczny poziom |
| 10 mm |
2773 Gs
277.3 mT
|
15.83 kg / 15826.7 g
155.3 N
|
krytyczny poziom |
| 15 mm |
1946 Gs
194.6 mT
|
7.79 kg / 7792.9 g
76.4 N
|
mocny |
| 20 mm |
1372 Gs
137.2 mT
|
3.88 kg / 3877.9 g
38.0 N
|
mocny |
| 30 mm |
723 Gs
72.3 mT
|
1.08 kg / 1076.5 g
10.6 N
|
niskie ryzyko |
| 50 mm |
258 Gs
25.8 mT
|
0.14 kg / 137.4 g
1.3 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 40x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
10.95 kg / 10946.0 g
107.4 N
|
| 1 mm | Stal (~0.2) |
9.89 kg / 9886.0 g
97.0 N
|
| 2 mm | Stal (~0.2) |
8.87 kg / 8866.0 g
87.0 N
|
| 3 mm | Stal (~0.2) |
7.91 kg / 7908.0 g
77.6 N
|
| 5 mm | Stal (~0.2) |
6.20 kg / 6196.0 g
60.8 N
|
| 10 mm | Stal (~0.2) |
3.17 kg / 3166.0 g
31.1 N
|
| 15 mm | Stal (~0.2) |
1.56 kg / 1558.0 g
15.3 N
|
| 20 mm | Stal (~0.2) |
0.78 kg / 776.0 g
7.6 N
|
| 30 mm | Stal (~0.2) |
0.22 kg / 216.0 g
2.1 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 40x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
16.42 kg / 16419.0 g
161.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
10.95 kg / 10946.0 g
107.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.47 kg / 5473.0 g
53.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
27.37 kg / 27365.0 g
268.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 40x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.82 kg / 1824.3 g
17.9 N
|
| 1 mm |
|
4.56 kg / 4560.8 g
44.7 N
|
| 2 mm |
|
9.12 kg / 9121.7 g
89.5 N
|
| 5 mm |
|
22.80 kg / 22804.2 g
223.7 N
|
| 10 mm |
|
45.61 kg / 45608.3 g
447.4 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 40x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
54.73 kg / 54730.0 g
536.9 N
|
OK |
| 40 °C | -2.2% |
53.53 kg / 53525.9 g
525.1 N
|
OK |
| 60 °C | -4.4% |
52.32 kg / 52321.9 g
513.3 N
|
OK |
| 80 °C | -6.6% |
51.12 kg / 51117.8 g
501.5 N
|
|
| 100 °C | -28.8% |
38.97 kg / 38967.8 g
382.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 40x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
205.97 kg / 205965 g
2020.5 N
5 879 Gs
|
N/A |
| 1 mm |
195.99 kg / 195993 g
1922.7 N
10 060 Gs
|
176.39 kg / 176393 g
1730.4 N
~0 Gs
|
| 2 mm |
186.03 kg / 186027 g
1824.9 N
9 800 Gs
|
167.42 kg / 167425 g
1642.4 N
~0 Gs
|
| 3 mm |
176.30 kg / 176302 g
1729.5 N
9 541 Gs
|
158.67 kg / 158672 g
1556.6 N
~0 Gs
|
| 5 mm |
157.67 kg / 157667 g
1546.7 N
9 023 Gs
|
141.90 kg / 141901 g
1392.0 N
~0 Gs
|
| 10 mm |
116.59 kg / 116593 g
1143.8 N
7 759 Gs
|
104.93 kg / 104933 g
1029.4 N
~0 Gs
|
| 20 mm |
59.56 kg / 59560 g
584.3 N
5 545 Gs
|
53.60 kg / 53604 g
525.9 N
~0 Gs
|
| 50 mm |
7.52 kg / 7522 g
73.8 N
1 971 Gs
|
6.77 kg / 6769 g
66.4 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 40x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 23.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 18.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 14.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 11.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 40x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.37 km/h
(4.55 m/s)
|
2.92 J | |
| 30 mm |
24.60 km/h
(6.83 m/s)
|
6.60 J | |
| 50 mm |
31.42 km/h
(8.73 m/s)
|
10.77 J | |
| 100 mm |
44.37 km/h
(12.33 m/s)
|
21.48 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 40x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 40x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 65 488 Mx | 654.9 µWb |
| Współczynnik Pc | 0.76 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 40x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 54.73 kg | Standard |
| Woda (dno rzeki) |
62.67 kg
(+7.94 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.76
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Charakteryzują się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Instrukcja bezpiecznej obsługi magnesów
Nie dawać dzieciom
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Zagrożenie dla nawigacji
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Zagrożenie fizyczne
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Siła neodymu
Stosuj magnesy z rozwagą. Ich ogromna siła może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Maksymalna temperatura
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Nośniki danych
Potężne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Wpływ na zdrowie
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
