MW 40x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010067
GTIN/EAN: 5906301810667
Średnica Ø
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
141.37 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.64 kg / 418.33 N
Indukcja magnetyczna
371.91 mT / 3719 Gs
Powłoka
[NiCuNi] nikiel
65.93 ZŁ z VAT / szt. + cena za transport
53.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość za pomocą
formularz zapytania
na naszej stronie.
Siłę i budowę magnesów przetestujesz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MW 40x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010067 |
| GTIN/EAN | 5906301810667 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 141.37 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.64 kg / 418.33 N |
| Indukcja magnetyczna ~ ? | 371.91 mT / 3719 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Niniejsze informacje są rezultat analizy matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3718 Gs
371.8 mT
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
krytyczny poziom |
| 1 mm |
3563 Gs
356.3 mT
|
39.16 kg / 86.33 lbs
39159.5 g / 384.2 N
|
krytyczny poziom |
| 2 mm |
3398 Gs
339.8 mT
|
35.62 kg / 78.52 lbs
35617.1 g / 349.4 N
|
krytyczny poziom |
| 3 mm |
3228 Gs
322.8 mT
|
32.13 kg / 70.84 lbs
32130.5 g / 315.2 N
|
krytyczny poziom |
| 5 mm |
2880 Gs
288.0 mT
|
25.58 kg / 56.40 lbs
25584.2 g / 251.0 N
|
krytyczny poziom |
| 10 mm |
2069 Gs
206.9 mT
|
13.20 kg / 29.09 lbs
13196.7 g / 129.5 N
|
krytyczny poziom |
| 15 mm |
1439 Gs
143.9 mT
|
6.38 kg / 14.07 lbs
6383.1 g / 62.6 N
|
mocny |
| 20 mm |
999 Gs
99.9 mT
|
3.08 kg / 6.79 lbs
3077.9 g / 30.2 N
|
mocny |
| 30 mm |
507 Gs
50.7 mT
|
0.79 kg / 1.75 lbs
792.4 g / 7.8 N
|
słaby uchwyt |
| 50 mm |
169 Gs
16.9 mT
|
0.09 kg / 0.19 lbs
88.4 g / 0.9 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.53 kg / 18.80 lbs
8528.0 g / 83.7 N
|
| 1 mm | Stal (~0.2) |
7.83 kg / 17.27 lbs
7832.0 g / 76.8 N
|
| 2 mm | Stal (~0.2) |
7.12 kg / 15.71 lbs
7124.0 g / 69.9 N
|
| 3 mm | Stal (~0.2) |
6.43 kg / 14.17 lbs
6426.0 g / 63.0 N
|
| 5 mm | Stal (~0.2) |
5.12 kg / 11.28 lbs
5116.0 g / 50.2 N
|
| 10 mm | Stal (~0.2) |
2.64 kg / 5.82 lbs
2640.0 g / 25.9 N
|
| 15 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 20 mm | Stal (~0.2) |
0.62 kg / 1.36 lbs
616.0 g / 6.0 N
|
| 30 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.79 kg / 28.20 lbs
12792.0 g / 125.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.53 kg / 18.80 lbs
8528.0 g / 83.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.26 kg / 9.40 lbs
4264.0 g / 41.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.32 kg / 47.00 lbs
21320.0 g / 209.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.13 kg / 4.70 lbs
2132.0 g / 20.9 N
|
| 1 mm |
|
5.33 kg / 11.75 lbs
5330.0 g / 52.3 N
|
| 2 mm |
|
10.66 kg / 23.50 lbs
10660.0 g / 104.6 N
|
| 3 mm |
|
15.99 kg / 35.25 lbs
15990.0 g / 156.9 N
|
| 5 mm |
|
26.65 kg / 58.75 lbs
26650.0 g / 261.4 N
|
| 10 mm |
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
| 11 mm |
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
| 12 mm |
|
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
|
OK |
| 40 °C | -2.2% |
41.70 kg / 91.94 lbs
41701.9 g / 409.1 N
|
OK |
| 60 °C | -4.4% |
40.76 kg / 89.87 lbs
40763.8 g / 399.9 N
|
|
| 80 °C | -6.6% |
39.83 kg / 87.80 lbs
39825.8 g / 390.7 N
|
|
| 100 °C | -28.8% |
30.36 kg / 66.93 lbs
30359.7 g / 297.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 40x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
107.12 kg / 236.16 lbs
5 156 Gs
|
16.07 kg / 35.42 lbs
16068 g / 157.6 N
|
N/A |
| 1 mm |
102.82 kg / 226.67 lbs
7 286 Gs
|
15.42 kg / 34.00 lbs
15422 g / 151.3 N
|
92.53 kg / 204.00 lbs
~0 Gs
|
| 2 mm |
98.38 kg / 216.89 lbs
7 127 Gs
|
14.76 kg / 32.53 lbs
14757 g / 144.8 N
|
88.54 kg / 195.20 lbs
~0 Gs
|
| 3 mm |
93.92 kg / 207.06 lbs
6 964 Gs
|
14.09 kg / 31.06 lbs
14088 g / 138.2 N
|
84.53 kg / 186.36 lbs
~0 Gs
|
| 5 mm |
85.07 kg / 187.55 lbs
6 627 Gs
|
12.76 kg / 28.13 lbs
12760 g / 125.2 N
|
76.56 kg / 168.79 lbs
~0 Gs
|
| 10 mm |
64.27 kg / 141.70 lbs
5 761 Gs
|
9.64 kg / 21.25 lbs
9641 g / 94.6 N
|
57.85 kg / 127.53 lbs
~0 Gs
|
| 20 mm |
33.15 kg / 73.09 lbs
4 137 Gs
|
4.97 kg / 10.96 lbs
4973 g / 48.8 N
|
29.84 kg / 65.78 lbs
~0 Gs
|
| 50 mm |
3.84 kg / 8.47 lbs
1 408 Gs
|
0.58 kg / 1.27 lbs
576 g / 5.7 N
|
3.46 kg / 7.62 lbs
~0 Gs
|
| 60 mm |
1.99 kg / 4.39 lbs
1 014 Gs
|
0.30 kg / 0.66 lbs
299 g / 2.9 N
|
1.79 kg / 3.95 lbs
~0 Gs
|
| 70 mm |
1.08 kg / 2.38 lbs
747 Gs
|
0.16 kg / 0.36 lbs
162 g / 1.6 N
|
0.97 kg / 2.14 lbs
~0 Gs
|
| 80 mm |
0.61 kg / 1.35 lbs
563 Gs
|
0.09 kg / 0.20 lbs
92 g / 0.9 N
|
0.55 kg / 1.22 lbs
~0 Gs
|
| 90 mm |
0.36 kg / 0.80 lbs
432 Gs
|
0.05 kg / 0.12 lbs
54 g / 0.5 N
|
0.33 kg / 0.72 lbs
~0 Gs
|
| 100 mm |
0.22 kg / 0.49 lbs
339 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.63 km/h
(5.73 m/s)
|
2.32 J | |
| 30 mm |
30.69 km/h
(8.52 m/s)
|
5.14 J | |
| 50 mm |
39.22 km/h
(10.89 m/s)
|
8.39 J | |
| 100 mm |
55.39 km/h
(15.39 m/s)
|
16.73 J |
Tabela 9: Parametry powłoki (trwałość)
MW 40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 48 650 Mx | 486.5 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.64 kg | Standard |
| Woda (dno rzeki) |
48.82 kg
(+6.18 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem blachy ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- z powierzchnią wolną od rys
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie jakiejkolwiek warstwy (farba, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – za chuda stal powoduje nasycenie magnetyczne, przez co część strumienia jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Bezpieczna praca przy magnesach z neodymem
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Potężne pole
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Ostrzeżenie dla sercowców
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Poważne obrażenia
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Chronić przed dziećmi
Magnesy neodymowe to nie zabawki. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Pole magnetyczne a elektronika
Bardzo silne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
