Magnesy neodymowe – najsilniejsze na rynku

Chcesz kupić naprawdę silne magnesy? Posiadamy w sprzedaży kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do użytku w domu, warsztatu oraz zadań przemysłowych. Zobacz produkty w naszym magazynie.

poznaj cennik i wymiary

Magnet fishing: solidne zestawy F200/F400

Odkryj pasję związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w trudnych warunkach wodnych.

znajdź sprzęt do poszukiwań

Uchwyty magnetyczne przemysłowe

Sprawdzone rozwiązania do montażu bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają szybkie usprawnienie pracy na magazynach. Idealnie nadają się przy mocowaniu lamp, sensorów oraz banerów.

sprawdź dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 40x15 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010067

GTIN/EAN: 5906301810667

Średnica Ø

40 mm [±0,1 mm]

Wysokość

15 mm [±0,1 mm]

Waga

141.37 g

Kierunek magnesowania

↑ osiowy

Udźwig

42.64 kg / 418.33 N

Indukcja magnetyczna

371.91 mT / 3719 Gs

Powłoka

[NiCuNi] nikiel

65.93 z VAT / szt. + cena za transport

53.60 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
53.60 ZŁ
65.93 ZŁ
cena od 20 szt.
50.38 ZŁ
61.97 ZŁ
cena od 50 szt.
47.17 ZŁ
58.02 ZŁ
Chcesz lepszą cenę?

Zadzwoń już teraz +48 22 499 98 98 alternatywnie pisz korzystając z nasz formularz online na naszej stronie.
Siłę oraz wygląd magnesu neodymowego obliczysz w naszym kalkulatorze siły.

Zamów do 14:00, a wyślemy dziś!

Właściwości fizyczne MW 40x15 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 40x15 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010067
GTIN/EAN 5906301810667
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 40 mm [±0,1 mm]
Wysokość 15 mm [±0,1 mm]
Waga 141.37 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 42.64 kg / 418.33 N
Indukcja magnetyczna ~ ? 371.91 mT / 3719 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 40x15 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu - raport

Poniższe dane stanowią bezpośredni efekt symulacji matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 40x15 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3718 Gs
371.8 mT
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
niebezpieczny!
1 mm 3563 Gs
356.3 mT
39.16 kg / 86.33 lbs
39159.5 g / 384.2 N
niebezpieczny!
2 mm 3398 Gs
339.8 mT
35.62 kg / 78.52 lbs
35617.1 g / 349.4 N
niebezpieczny!
3 mm 3228 Gs
322.8 mT
32.13 kg / 70.84 lbs
32130.5 g / 315.2 N
niebezpieczny!
5 mm 2880 Gs
288.0 mT
25.58 kg / 56.40 lbs
25584.2 g / 251.0 N
niebezpieczny!
10 mm 2069 Gs
206.9 mT
13.20 kg / 29.09 lbs
13196.7 g / 129.5 N
niebezpieczny!
15 mm 1439 Gs
143.9 mT
6.38 kg / 14.07 lbs
6383.1 g / 62.6 N
średnie ryzyko
20 mm 999 Gs
99.9 mT
3.08 kg / 6.79 lbs
3077.9 g / 30.2 N
średnie ryzyko
30 mm 507 Gs
50.7 mT
0.79 kg / 1.75 lbs
792.4 g / 7.8 N
bezpieczny
50 mm 169 Gs
16.9 mT
0.09 kg / 0.19 lbs
88.4 g / 0.9 N
bezpieczny

Tabela 2: Siła równoległa zsuwania (pion)
MW 40x15 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 8.53 kg / 18.80 lbs
8528.0 g / 83.7 N
1 mm Stal (~0.2) 7.83 kg / 17.27 lbs
7832.0 g / 76.8 N
2 mm Stal (~0.2) 7.12 kg / 15.71 lbs
7124.0 g / 69.9 N
3 mm Stal (~0.2) 6.43 kg / 14.17 lbs
6426.0 g / 63.0 N
5 mm Stal (~0.2) 5.12 kg / 11.28 lbs
5116.0 g / 50.2 N
10 mm Stal (~0.2) 2.64 kg / 5.82 lbs
2640.0 g / 25.9 N
15 mm Stal (~0.2) 1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
20 mm Stal (~0.2) 0.62 kg / 1.36 lbs
616.0 g / 6.0 N
30 mm Stal (~0.2) 0.16 kg / 0.35 lbs
158.0 g / 1.5 N
50 mm Stal (~0.2) 0.02 kg / 0.04 lbs
18.0 g / 0.2 N

Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 40x15 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
12.79 kg / 28.20 lbs
12792.0 g / 125.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
8.53 kg / 18.80 lbs
8528.0 g / 83.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
4.26 kg / 9.40 lbs
4264.0 g / 41.8 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
21.32 kg / 47.00 lbs
21320.0 g / 209.1 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 40x15 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
2.13 kg / 4.70 lbs
2132.0 g / 20.9 N
1 mm
13%
5.33 kg / 11.75 lbs
5330.0 g / 52.3 N
2 mm
25%
10.66 kg / 23.50 lbs
10660.0 g / 104.6 N
3 mm
38%
15.99 kg / 35.25 lbs
15990.0 g / 156.9 N
5 mm
63%
26.65 kg / 58.75 lbs
26650.0 g / 261.4 N
10 mm
100%
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
11 mm
100%
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
12 mm
100%
42.64 kg / 94.00 lbs
42640.0 g / 418.3 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 40x15 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 42.64 kg / 94.00 lbs
42640.0 g / 418.3 N
OK
40 °C -2.2% 41.70 kg / 91.94 lbs
41701.9 g / 409.1 N
OK
60 °C -4.4% 40.76 kg / 89.87 lbs
40763.8 g / 399.9 N
80 °C -6.6% 39.83 kg / 87.80 lbs
39825.8 g / 390.7 N
100 °C -28.8% 30.36 kg / 66.93 lbs
30359.7 g / 297.8 N

Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 40x15 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 107.12 kg / 236.16 lbs
5 156 Gs
16.07 kg / 35.42 lbs
16068 g / 157.6 N
N/A
1 mm 102.82 kg / 226.67 lbs
7 286 Gs
15.42 kg / 34.00 lbs
15422 g / 151.3 N
92.53 kg / 204.00 lbs
~0 Gs
2 mm 98.38 kg / 216.89 lbs
7 127 Gs
14.76 kg / 32.53 lbs
14757 g / 144.8 N
88.54 kg / 195.20 lbs
~0 Gs
3 mm 93.92 kg / 207.06 lbs
6 964 Gs
14.09 kg / 31.06 lbs
14088 g / 138.2 N
84.53 kg / 186.36 lbs
~0 Gs
5 mm 85.07 kg / 187.55 lbs
6 627 Gs
12.76 kg / 28.13 lbs
12760 g / 125.2 N
76.56 kg / 168.79 lbs
~0 Gs
10 mm 64.27 kg / 141.70 lbs
5 761 Gs
9.64 kg / 21.25 lbs
9641 g / 94.6 N
57.85 kg / 127.53 lbs
~0 Gs
20 mm 33.15 kg / 73.09 lbs
4 137 Gs
4.97 kg / 10.96 lbs
4973 g / 48.8 N
29.84 kg / 65.78 lbs
~0 Gs
50 mm 3.84 kg / 8.47 lbs
1 408 Gs
0.58 kg / 1.27 lbs
576 g / 5.7 N
3.46 kg / 7.62 lbs
~0 Gs
60 mm 1.99 kg / 4.39 lbs
1 014 Gs
0.30 kg / 0.66 lbs
299 g / 2.9 N
1.79 kg / 3.95 lbs
~0 Gs
70 mm 1.08 kg / 2.38 lbs
747 Gs
0.16 kg / 0.36 lbs
162 g / 1.6 N
0.97 kg / 2.14 lbs
~0 Gs
80 mm 0.61 kg / 1.35 lbs
563 Gs
0.09 kg / 0.20 lbs
92 g / 0.9 N
0.55 kg / 1.22 lbs
~0 Gs
90 mm 0.36 kg / 0.80 lbs
432 Gs
0.05 kg / 0.12 lbs
54 g / 0.5 N
0.33 kg / 0.72 lbs
~0 Gs
100 mm 0.22 kg / 0.49 lbs
339 Gs
0.03 kg / 0.07 lbs
33 g / 0.3 N
0.20 kg / 0.44 lbs
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 40x15 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 19.0 cm
Implant słuchowy 10 Gs (1.0 mT) 15.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 11.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 9.0 cm
Immobilizer 50 Gs (5.0 mT) 8.5 cm
Karta płatnicza 400 Gs (40.0 mT) 3.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 3.0 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 40x15 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 20.63 km/h
(5.73 m/s)
2.32 J
30 mm 30.69 km/h
(8.52 m/s)
5.14 J
50 mm 39.22 km/h
(10.89 m/s)
8.39 J
100 mm 55.39 km/h
(15.39 m/s)
16.73 J

Tabela 9: Specyfikacja ochrony powierzchni
MW 40x15 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MW 40x15 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 48 650 Mx 486.5 µWb
Współczynnik Pc 0.48 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MW 40x15 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 42.64 kg Standard
Woda (dno rzeki) 48.82 kg
(+6.18 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Ześlizg (ściana)

*Pamiętaj: Na powierzchni pionowej magnes utrzyma tylko ~20-30% nominalnego udźwigu.

2. Grubość podłoża

*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.

3. Stabilność termiczna

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010067-2025
Przelicznik magnesów
Udźwig magnesu

Indukcja magnetyczna

Zobacz też inne produkty

Prezentowany produkt to niezwykle mocny magnes w kształcie walca, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø40x15 mm gwarantuje najwyższą gęstość energii. Komponent MW 40x15 / N38 cechuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 42.64 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 418.33 N przy wadze zaledwie 141.37 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na delikatną strukturę spieku ceramicznego, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego profesjonalnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując trwałość połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do 90% zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø40x15), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø40x15 mm, co przy wadze 141.37 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 418.33 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 141.37 g. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 15 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady oraz zalety magnesów z neodymu Nd2Fe14B.

Korzyści

Neodymy to nie tylko moc przyciągania, ale także inne kluczowe cechy, w tym::
  • Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
  • Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
  • Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
  • Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
  • Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
  • Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
  • Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.

Wady

Warto znać też słabe strony magnesów neodymowych:
  • Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
  • Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Parametry udźwigu

Udźwig maksymalny dla magnesu neodymowego – od czego zależy?

Siła oderwania to rezultat pomiaru dla optymalnej konfiguracji, zakładającej:
  • przy kontakcie z blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
  • posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
  • o idealnie gładkiej powierzchni styku
  • bez najmniejszej szczeliny pomiędzy magnesem a stalą
  • przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
  • przy temperaturze otoczenia pokojowej

Praktyczny udźwig: czynniki wpływające

Warto wiedzieć, iż udźwig roboczy będzie inne w zależności od następujących czynników, w kolejności ważności:
  • Odstęp (między magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
  • Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
  • Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
  • Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
  • Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).

Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.

Środki ostrożności podczas pracy z magnesami neodymowymi
Uszkodzenia czujników

Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.

Kruchy spiek

Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.

Uszkodzenia ciała

Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.

Ostrożność wymagana

Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.

Zagrożenie dla elektroniki

Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).

Interferencja medyczna

Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.

Alergia na nikiel

Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.

Ryzyko pożaru

Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.

Temperatura pracy

Standardowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.

Produkt nie dla dzieci

Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.

Ostrzeżenie! Potrzebujesz więcej danych? Sprawdź nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98