MW 40x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010067
GTIN/EAN: 5906301810667
Średnica Ø
40 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
141.37 g
Kierunek magnesowania
↑ osiowy
Udźwig
42.64 kg / 418.33 N
Indukcja magnetyczna
371.91 mT / 3719 Gs
Powłoka
[NiCuNi] nikiel
65.93 ZŁ z VAT / szt. + cena za transport
53.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub napisz poprzez
formularz zgłoszeniowy
na stronie kontakt.
Właściwości i wygląd elementów magnetycznych zweryfikujesz u nas w
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MW 40x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010067 |
| GTIN/EAN | 5906301810667 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 141.37 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 42.64 kg / 418.33 N |
| Indukcja magnetyczna ~ ? | 371.91 mT / 3719 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione informacje stanowią bezpośredni efekt analizy inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 40x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3718 Gs
371.8 mT
|
42.64 kg / 42640.0 g
418.3 N
|
miażdżący |
| 1 mm |
3563 Gs
356.3 mT
|
39.16 kg / 39159.5 g
384.2 N
|
miażdżący |
| 2 mm |
3398 Gs
339.8 mT
|
35.62 kg / 35617.1 g
349.4 N
|
miażdżący |
| 3 mm |
3228 Gs
322.8 mT
|
32.13 kg / 32130.5 g
315.2 N
|
miażdżący |
| 5 mm |
2880 Gs
288.0 mT
|
25.58 kg / 25584.2 g
251.0 N
|
miażdżący |
| 10 mm |
2069 Gs
206.9 mT
|
13.20 kg / 13196.7 g
129.5 N
|
miażdżący |
| 15 mm |
1439 Gs
143.9 mT
|
6.38 kg / 6383.1 g
62.6 N
|
uwaga |
| 20 mm |
999 Gs
99.9 mT
|
3.08 kg / 3077.9 g
30.2 N
|
uwaga |
| 30 mm |
507 Gs
50.7 mT
|
0.79 kg / 792.4 g
7.8 N
|
niskie ryzyko |
| 50 mm |
169 Gs
16.9 mT
|
0.09 kg / 88.4 g
0.9 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 40x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.53 kg / 8528.0 g
83.7 N
|
| 1 mm | Stal (~0.2) |
7.83 kg / 7832.0 g
76.8 N
|
| 2 mm | Stal (~0.2) |
7.12 kg / 7124.0 g
69.9 N
|
| 3 mm | Stal (~0.2) |
6.43 kg / 6426.0 g
63.0 N
|
| 5 mm | Stal (~0.2) |
5.12 kg / 5116.0 g
50.2 N
|
| 10 mm | Stal (~0.2) |
2.64 kg / 2640.0 g
25.9 N
|
| 15 mm | Stal (~0.2) |
1.28 kg / 1276.0 g
12.5 N
|
| 20 mm | Stal (~0.2) |
0.62 kg / 616.0 g
6.0 N
|
| 30 mm | Stal (~0.2) |
0.16 kg / 158.0 g
1.5 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 40x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.79 kg / 12792.0 g
125.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.53 kg / 8528.0 g
83.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.26 kg / 4264.0 g
41.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
21.32 kg / 21320.0 g
209.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 40x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.13 kg / 2132.0 g
20.9 N
|
| 1 mm |
|
5.33 kg / 5330.0 g
52.3 N
|
| 2 mm |
|
10.66 kg / 10660.0 g
104.6 N
|
| 5 mm |
|
26.65 kg / 26650.0 g
261.4 N
|
| 10 mm |
|
42.64 kg / 42640.0 g
418.3 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 40x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
42.64 kg / 42640.0 g
418.3 N
|
OK |
| 40 °C | -2.2% |
41.70 kg / 41701.9 g
409.1 N
|
OK |
| 60 °C | -4.4% |
40.76 kg / 40763.8 g
399.9 N
|
|
| 80 °C | -6.6% |
39.83 kg / 39825.8 g
390.7 N
|
|
| 100 °C | -28.8% |
30.36 kg / 30359.7 g
297.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 40x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
107.12 kg / 107122 g
1050.9 N
5 156 Gs
|
N/A |
| 1 mm |
102.82 kg / 102816 g
1008.6 N
7 286 Gs
|
92.53 kg / 92535 g
907.8 N
~0 Gs
|
| 2 mm |
98.38 kg / 98378 g
965.1 N
7 127 Gs
|
88.54 kg / 88540 g
868.6 N
~0 Gs
|
| 3 mm |
93.92 kg / 93923 g
921.4 N
6 964 Gs
|
84.53 kg / 84531 g
829.2 N
~0 Gs
|
| 5 mm |
85.07 kg / 85070 g
834.5 N
6 627 Gs
|
76.56 kg / 76563 g
751.1 N
~0 Gs
|
| 10 mm |
64.27 kg / 64274 g
630.5 N
5 761 Gs
|
57.85 kg / 57846 g
567.5 N
~0 Gs
|
| 20 mm |
33.15 kg / 33153 g
325.2 N
4 137 Gs
|
29.84 kg / 29838 g
292.7 N
~0 Gs
|
| 50 mm |
3.84 kg / 3840 g
37.7 N
1 408 Gs
|
3.46 kg / 3456 g
33.9 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 40x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 19.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 15.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 8.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 40x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.63 km/h
(5.73 m/s)
|
2.32 J | |
| 30 mm |
30.69 km/h
(8.52 m/s)
|
5.14 J | |
| 50 mm |
39.22 km/h
(10.89 m/s)
|
8.39 J | |
| 100 mm |
55.39 km/h
(15.39 m/s)
|
16.73 J |
Tabela 9: Parametry powłoki (trwałość)
MW 40x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 40x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 48 650 Mx | 486.5 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 40x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 42.64 kg | Standard |
| Woda (dno rzeki) |
48.82 kg
(+6.18 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z zastosowaniem podłoża ze stali niskowęglowej, działającej jako element zamykający obwód
- której grubość wynosi ok. 10 mm
- o szlifowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (pomiędzy magnesem a blachą), gdyż nawet niewielka odległość (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
BHP przy magnesach
Uczulenie na powłokę
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Łatwopalność
Proszek powstający podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Nośniki danych
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Potężne pole
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Uwaga medyczna
Osoby z kardiowerterem muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Zagrożenie dla najmłodszych
Silne magnesy nie służą do zabawy. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
