MW 30x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010056
GTIN/EAN: 5906301810551
Średnica Ø
30 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
26.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.71 kg / 85.44 N
Indukcja magnetyczna
196.02 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
9.59 ZŁ z VAT / szt. + cena za transport
7.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub pisz korzystając z
formularz zgłoszeniowy
na stronie kontakt.
Siłę a także formę elementów magnetycznych testujesz u nas w
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja - MW 30x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 30x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010056 |
| GTIN/EAN | 5906301810551 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 30 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 26.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.71 kg / 85.44 N |
| Indukcja magnetyczna ~ ? | 196.02 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Poniższe dane stanowią bezpośredni efekt analizy matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 30x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1960 Gs
196.0 mT
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
mocny |
| 1 mm |
1890 Gs
189.0 mT
|
8.10 kg / 17.86 lbs
8100.7 g / 79.5 N
|
mocny |
| 2 mm |
1802 Gs
180.2 mT
|
7.37 kg / 16.24 lbs
7366.2 g / 72.3 N
|
mocny |
| 3 mm |
1702 Gs
170.2 mT
|
6.57 kg / 14.47 lbs
6565.7 g / 64.4 N
|
mocny |
| 5 mm |
1479 Gs
147.9 mT
|
4.96 kg / 10.93 lbs
4956.4 g / 48.6 N
|
mocny |
| 10 mm |
945 Gs
94.5 mT
|
2.02 kg / 4.46 lbs
2024.4 g / 19.9 N
|
mocny |
| 15 mm |
576 Gs
57.6 mT
|
0.75 kg / 1.66 lbs
752.1 g / 7.4 N
|
niskie ryzyko |
| 20 mm |
356 Gs
35.6 mT
|
0.29 kg / 0.64 lbs
288.1 g / 2.8 N
|
niskie ryzyko |
| 30 mm |
153 Gs
15.3 mT
|
0.05 kg / 0.12 lbs
53.2 g / 0.5 N
|
niskie ryzyko |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.01 lbs
4.2 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 30x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.74 kg / 3.84 lbs
1742.0 g / 17.1 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 3.57 lbs
1620.0 g / 15.9 N
|
| 2 mm | Stal (~0.2) |
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 2.90 lbs
1314.0 g / 12.9 N
|
| 5 mm | Stal (~0.2) |
0.99 kg / 2.19 lbs
992.0 g / 9.7 N
|
| 10 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 15 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 20 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 30x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.61 kg / 5.76 lbs
2613.0 g / 25.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.74 kg / 3.84 lbs
1742.0 g / 17.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.87 kg / 1.92 lbs
871.0 g / 8.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.36 kg / 9.60 lbs
4355.0 g / 42.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 30x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.87 kg / 1.92 lbs
871.0 g / 8.5 N
|
| 1 mm |
|
2.18 kg / 4.80 lbs
2177.5 g / 21.4 N
|
| 2 mm |
|
4.36 kg / 9.60 lbs
4355.0 g / 42.7 N
|
| 3 mm |
|
6.53 kg / 14.40 lbs
6532.5 g / 64.1 N
|
| 5 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 10 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 11 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 12 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 30x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
OK |
| 40 °C | -2.2% |
8.52 kg / 18.78 lbs
8518.4 g / 83.6 N
|
OK |
| 60 °C | -4.4% |
8.33 kg / 18.36 lbs
8326.8 g / 81.7 N
|
|
| 80 °C | -6.6% |
8.14 kg / 17.93 lbs
8135.1 g / 79.8 N
|
|
| 100 °C | -28.8% |
6.20 kg / 13.67 lbs
6201.5 g / 60.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 30x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.74 kg / 36.91 lbs
3 437 Gs
|
2.51 kg / 5.54 lbs
2511 g / 24.6 N
|
N/A |
| 1 mm |
16.20 kg / 35.71 lbs
3 856 Gs
|
2.43 kg / 5.36 lbs
2429 g / 23.8 N
|
14.58 kg / 32.14 lbs
~0 Gs
|
| 2 mm |
15.57 kg / 34.33 lbs
3 780 Gs
|
2.34 kg / 5.15 lbs
2335 g / 22.9 N
|
14.01 kg / 30.89 lbs
~0 Gs
|
| 3 mm |
14.89 kg / 32.82 lbs
3 696 Gs
|
2.23 kg / 4.92 lbs
2233 g / 21.9 N
|
13.40 kg / 29.54 lbs
~0 Gs
|
| 5 mm |
13.40 kg / 29.54 lbs
3 507 Gs
|
2.01 kg / 4.43 lbs
2010 g / 19.7 N
|
12.06 kg / 26.58 lbs
~0 Gs
|
| 10 mm |
9.53 kg / 21.00 lbs
2 957 Gs
|
1.43 kg / 3.15 lbs
1429 g / 14.0 N
|
8.57 kg / 18.90 lbs
~0 Gs
|
| 20 mm |
3.89 kg / 8.58 lbs
1 890 Gs
|
0.58 kg / 1.29 lbs
584 g / 5.7 N
|
3.50 kg / 7.72 lbs
~0 Gs
|
| 50 mm |
0.23 kg / 0.50 lbs
458 Gs
|
0.03 kg / 0.08 lbs
34 g / 0.3 N
|
0.21 kg / 0.45 lbs
~0 Gs
|
| 60 mm |
0.10 kg / 0.23 lbs
307 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.11 lbs
213 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.06 lbs
153 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
113 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 30x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 30x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.77 km/h
(5.77 m/s)
|
0.44 J | |
| 30 mm |
31.78 km/h
(8.83 m/s)
|
1.03 J | |
| 50 mm |
40.89 km/h
(11.36 m/s)
|
1.71 J | |
| 100 mm |
57.81 km/h
(16.06 m/s)
|
3.42 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 30x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 30x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 658 Mx | 166.6 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 30x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.71 kg | Standard |
| Woda (dno rzeki) |
9.97 kg
(+1.26 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią wolną od rys
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Praktyczny udźwig: czynniki wpływające
- Szczelina – występowanie ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Środki ostrożności podczas pracy przy magnesach neodymowych
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Urazy ciała
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Nadwrażliwość na metale
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Ryzyko połknięcia
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Ostrożność wymagana
Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Przegrzanie magnesu
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.
Bezpieczny dystans
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Zagrożenie wybuchem pyłu
Proszek powstający podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
