MW 30x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010056
GTIN/EAN: 5906301810551
Średnica Ø
30 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
26.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.71 kg / 85.42 N
Indukcja magnetyczna
196.02 mT / 1960 Gs
Powłoka
[NiCuNi] nikiel
8.35 ZŁ z VAT / szt. + cena za transport
6.79 ZŁ netto + 23% VAT / szt.
6.12 ZŁ netto było najniższą ceną w ciągu ostatnich 30 dni
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo napisz za pomocą
formularz zapytania
na stronie kontaktowej.
Właściwości oraz budowę magnesu neodymowego testujesz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 30x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 30x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010056 |
| GTIN/EAN | 5906301810551 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 30 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 26.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.71 kg / 85.42 N |
| Indukcja magnetyczna ~ ? | 196.02 mT / 1960 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Poniższe informacje są bezpośredni efekt symulacji matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 30x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1960 Gs
196.0 mT
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
średnie ryzyko |
| 1 mm |
1890 Gs
189.0 mT
|
8.10 kg / 17.86 lbs
8100.7 g / 79.5 N
|
średnie ryzyko |
| 2 mm |
1802 Gs
180.2 mT
|
7.37 kg / 16.24 lbs
7366.2 g / 72.3 N
|
średnie ryzyko |
| 3 mm |
1702 Gs
170.2 mT
|
6.57 kg / 14.47 lbs
6565.7 g / 64.4 N
|
średnie ryzyko |
| 5 mm |
1479 Gs
147.9 mT
|
4.96 kg / 10.93 lbs
4956.4 g / 48.6 N
|
średnie ryzyko |
| 10 mm |
945 Gs
94.5 mT
|
2.02 kg / 4.46 lbs
2024.4 g / 19.9 N
|
średnie ryzyko |
| 15 mm |
576 Gs
57.6 mT
|
0.75 kg / 1.66 lbs
752.1 g / 7.4 N
|
bezpieczny |
| 20 mm |
356 Gs
35.6 mT
|
0.29 kg / 0.64 lbs
288.1 g / 2.8 N
|
bezpieczny |
| 30 mm |
153 Gs
15.3 mT
|
0.05 kg / 0.12 lbs
53.2 g / 0.5 N
|
bezpieczny |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.01 lbs
4.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 30x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.74 kg / 3.84 lbs
1742.0 g / 17.1 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 3.57 lbs
1620.0 g / 15.9 N
|
| 2 mm | Stal (~0.2) |
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 2.90 lbs
1314.0 g / 12.9 N
|
| 5 mm | Stal (~0.2) |
0.99 kg / 2.19 lbs
992.0 g / 9.7 N
|
| 10 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 15 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 20 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 30x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.61 kg / 5.76 lbs
2613.0 g / 25.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.74 kg / 3.84 lbs
1742.0 g / 17.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.87 kg / 1.92 lbs
871.0 g / 8.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.36 kg / 9.60 lbs
4355.0 g / 42.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 30x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.87 kg / 1.92 lbs
871.0 g / 8.5 N
|
| 1 mm |
|
2.18 kg / 4.80 lbs
2177.5 g / 21.4 N
|
| 2 mm |
|
4.36 kg / 9.60 lbs
4355.0 g / 42.7 N
|
| 3 mm |
|
6.53 kg / 14.40 lbs
6532.5 g / 64.1 N
|
| 5 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 10 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 11 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
| 12 mm |
|
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 30x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.71 kg / 19.20 lbs
8710.0 g / 85.4 N
|
OK |
| 40 °C | -2.2% |
8.52 kg / 18.78 lbs
8518.4 g / 83.6 N
|
OK |
| 60 °C | -4.4% |
8.33 kg / 18.36 lbs
8326.8 g / 81.7 N
|
|
| 80 °C | -6.6% |
8.14 kg / 17.93 lbs
8135.1 g / 79.8 N
|
|
| 100 °C | -28.8% |
6.20 kg / 13.67 lbs
6201.5 g / 60.8 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 30x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.74 kg / 36.91 lbs
3 437 Gs
|
2.51 kg / 5.54 lbs
2511 g / 24.6 N
|
N/A |
| 1 mm |
16.20 kg / 35.71 lbs
3 856 Gs
|
2.43 kg / 5.36 lbs
2429 g / 23.8 N
|
14.58 kg / 32.14 lbs
~0 Gs
|
| 2 mm |
15.57 kg / 34.33 lbs
3 780 Gs
|
2.34 kg / 5.15 lbs
2335 g / 22.9 N
|
14.01 kg / 30.89 lbs
~0 Gs
|
| 3 mm |
14.89 kg / 32.82 lbs
3 696 Gs
|
2.23 kg / 4.92 lbs
2233 g / 21.9 N
|
13.40 kg / 29.54 lbs
~0 Gs
|
| 5 mm |
13.40 kg / 29.54 lbs
3 507 Gs
|
2.01 kg / 4.43 lbs
2010 g / 19.7 N
|
12.06 kg / 26.58 lbs
~0 Gs
|
| 10 mm |
9.53 kg / 21.00 lbs
2 957 Gs
|
1.43 kg / 3.15 lbs
1429 g / 14.0 N
|
8.57 kg / 18.90 lbs
~0 Gs
|
| 20 mm |
3.89 kg / 8.58 lbs
1 890 Gs
|
0.58 kg / 1.29 lbs
584 g / 5.7 N
|
3.50 kg / 7.72 lbs
~0 Gs
|
| 50 mm |
0.23 kg / 0.50 lbs
458 Gs
|
0.03 kg / 0.08 lbs
34 g / 0.3 N
|
0.21 kg / 0.45 lbs
~0 Gs
|
| 60 mm |
0.10 kg / 0.23 lbs
307 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.11 lbs
213 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.06 lbs
153 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
113 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 30x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 30x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.77 km/h
(5.77 m/s)
|
0.44 J | |
| 30 mm |
31.78 km/h
(8.83 m/s)
|
1.03 J | |
| 50 mm |
40.89 km/h
(11.36 m/s)
|
1.71 J | |
| 100 mm |
57.81 km/h
(16.06 m/s)
|
3.42 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 30x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 30x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 658 Mx | 166.6 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 30x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.71 kg | Standard |
| Woda (dno rzeki) |
9.97 kg
(+1.26 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- z zastosowaniem blachy ze stali niskowęglowej, działającej jako element zamykający obwód
- o przekroju nie mniejszej niż 10 mm
- o wypolerowanej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig wyznaczano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Trwała utrata siły
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Uwaga: zadławienie
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Siła zgniatająca
Duże magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Reakcje alergiczne
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Rekomendujemy stosowanie rękawiczek ochronnych.
Kompas i GPS
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Ostrożność wymagana
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.
