MW 29.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010052
GTIN/EAN: 5906301810513
Średnica Ø
29.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
52.66 g
Kierunek magnesowania
→ diametralny
Udźwig
21.50 kg / 210.90 N
Indukcja magnetyczna
344.60 mT / 3446 Gs
Powłoka
[NiCuNi] nikiel
24.60 ZŁ z VAT / szt. + cena za transport
20.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo pisz za pomocą
formularz
przez naszą stronę.
Masę i kształt magnesów obliczysz w naszym
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja produktu - MW 29.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 29.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010052 |
| GTIN/EAN | 5906301810513 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 29.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 52.66 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 21.50 kg / 210.90 N |
| Indukcja magnetyczna ~ ? | 344.60 mT / 3446 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Niniejsze dane są wynik kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 29.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3445 Gs
344.5 mT
|
21.50 kg / 21500.0 g
210.9 N
|
niebezpieczny! |
| 1 mm |
3261 Gs
326.1 mT
|
19.26 kg / 19256.6 g
188.9 N
|
niebezpieczny! |
| 2 mm |
3059 Gs
305.9 mT
|
16.95 kg / 16947.4 g
166.3 N
|
niebezpieczny! |
| 3 mm |
2848 Gs
284.8 mT
|
14.70 kg / 14696.2 g
144.2 N
|
niebezpieczny! |
| 5 mm |
2425 Gs
242.5 mT
|
10.65 kg / 10650.1 g
104.5 N
|
niebezpieczny! |
| 10 mm |
1519 Gs
151.9 mT
|
4.18 kg / 4178.4 g
41.0 N
|
średnie ryzyko |
| 15 mm |
930 Gs
93.0 mT
|
1.57 kg / 1565.8 g
15.4 N
|
bezpieczny |
| 20 mm |
583 Gs
58.3 mT
|
0.62 kg / 616.0 g
6.0 N
|
bezpieczny |
| 30 mm |
258 Gs
25.8 mT
|
0.12 kg / 121.0 g
1.2 N
|
bezpieczny |
| 50 mm |
76 Gs
7.6 mT
|
0.01 kg / 10.4 g
0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 29.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.30 kg / 4300.0 g
42.2 N
|
| 1 mm | Stal (~0.2) |
3.85 kg / 3852.0 g
37.8 N
|
| 2 mm | Stal (~0.2) |
3.39 kg / 3390.0 g
33.3 N
|
| 3 mm | Stal (~0.2) |
2.94 kg / 2940.0 g
28.8 N
|
| 5 mm | Stal (~0.2) |
2.13 kg / 2130.0 g
20.9 N
|
| 10 mm | Stal (~0.2) |
0.84 kg / 836.0 g
8.2 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 314.0 g
3.1 N
|
| 20 mm | Stal (~0.2) |
0.12 kg / 124.0 g
1.2 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 29.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.45 kg / 6450.0 g
63.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.30 kg / 4300.0 g
42.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.15 kg / 2150.0 g
21.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.75 kg / 10750.0 g
105.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 29.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.08 kg / 1075.0 g
10.5 N
|
| 1 mm |
|
2.69 kg / 2687.5 g
26.4 N
|
| 2 mm |
|
5.38 kg / 5375.0 g
52.7 N
|
| 5 mm |
|
13.44 kg / 13437.5 g
131.8 N
|
| 10 mm |
|
21.50 kg / 21500.0 g
210.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 29.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
21.50 kg / 21500.0 g
210.9 N
|
OK |
| 40 °C | -2.2% |
21.03 kg / 21027.0 g
206.3 N
|
OK |
| 60 °C | -4.4% |
20.55 kg / 20554.0 g
201.6 N
|
|
| 80 °C | -6.6% |
20.08 kg / 20081.0 g
197.0 N
|
|
| 100 °C | -28.8% |
15.31 kg / 15308.0 g
150.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 29.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
51.38 kg / 51384 g
504.1 N
4 963 Gs
|
N/A |
| 1 mm |
48.76 kg / 48760 g
478.3 N
6 712 Gs
|
43.88 kg / 43884 g
430.5 N
~0 Gs
|
| 2 mm |
46.02 kg / 46022 g
451.5 N
6 521 Gs
|
41.42 kg / 41420 g
406.3 N
~0 Gs
|
| 3 mm |
43.26 kg / 43260 g
424.4 N
6 322 Gs
|
38.93 kg / 38934 g
381.9 N
~0 Gs
|
| 5 mm |
37.78 kg / 37783 g
370.7 N
5 909 Gs
|
34.00 kg / 34005 g
333.6 N
~0 Gs
|
| 10 mm |
25.45 kg / 25453 g
249.7 N
4 850 Gs
|
22.91 kg / 22908 g
224.7 N
~0 Gs
|
| 20 mm |
9.99 kg / 9986 g
98.0 N
3 038 Gs
|
8.99 kg / 8988 g
88.2 N
~0 Gs
|
| 50 mm |
0.63 kg / 627 g
6.1 N
761 Gs
|
0.56 kg / 564 g
5.5 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 29.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 29.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.72 km/h
(6.31 m/s)
|
1.05 J | |
| 30 mm |
35.42 km/h
(9.84 m/s)
|
2.55 J | |
| 50 mm |
45.58 km/h
(12.66 m/s)
|
4.22 J | |
| 100 mm |
64.44 km/h
(17.90 m/s)
|
8.44 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 29.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 29.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 25 588 Mx | 255.9 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 29.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 21.50 kg | Standard |
| Woda (dno rzeki) |
24.62 kg
(+3.12 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- z zastosowaniem podłoża ze miękkiej stali, która służy jako zwora magnetyczna
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet niewielka odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Łamliwość magnesów
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Uczulenie na powłokę
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Bezpieczny dystans
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Produkt nie dla dzieci
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Kompas i GPS
Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Urazy ciała
Duże magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
