MW 24x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010048
GTIN/EAN: 5906301810476
Średnica Ø
24 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
20.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.98 kg / 97.88 N
Indukcja magnetyczna
277.18 mT / 2772 Gs
Powłoka
[Zn] cynk
5.10 ZŁ z VAT / szt. + cena za transport
4.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub daj znać za pomocą
nasz formularz online
na stronie kontakt.
Siłę oraz wygląd magnesu neodymowego zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 24x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 24x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010048 |
| GTIN/EAN | 5906301810476 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 24 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 20.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.98 kg / 97.88 N |
| Indukcja magnetyczna ~ ? | 277.18 mT / 2772 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe dane są wynik kalkulacji fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 24x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
mocny |
| 1 mm |
2609 Gs
260.9 mT
|
8.85 kg / 19.50 lbs
8846.4 g / 86.8 N
|
mocny |
| 2 mm |
2420 Gs
242.0 mT
|
7.61 kg / 16.78 lbs
7609.6 g / 74.7 N
|
mocny |
| 3 mm |
2216 Gs
221.6 mT
|
6.38 kg / 14.07 lbs
6383.0 g / 62.6 N
|
mocny |
| 5 mm |
1805 Gs
180.5 mT
|
4.23 kg / 9.33 lbs
4233.2 g / 41.5 N
|
mocny |
| 10 mm |
991 Gs
99.1 mT
|
1.28 kg / 2.81 lbs
1275.9 g / 12.5 N
|
słaby uchwyt |
| 15 mm |
542 Gs
54.2 mT
|
0.38 kg / 0.84 lbs
381.4 g / 3.7 N
|
słaby uchwyt |
| 20 mm |
313 Gs
31.3 mT
|
0.13 kg / 0.28 lbs
127.2 g / 1.2 N
|
słaby uchwyt |
| 30 mm |
125 Gs
12.5 mT
|
0.02 kg / 0.04 lbs
20.4 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 24x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.90 lbs
1770.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.52 kg / 3.36 lbs
1522.0 g / 14.9 N
|
| 3 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 5 mm | Stal (~0.2) |
0.85 kg / 1.87 lbs
846.0 g / 8.3 N
|
| 10 mm | Stal (~0.2) |
0.26 kg / 0.56 lbs
256.0 g / 2.5 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 24x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.99 kg / 6.60 lbs
2994.0 g / 29.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 24x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| 1 mm |
|
2.50 kg / 5.50 lbs
2495.0 g / 24.5 N
|
| 2 mm |
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
| 3 mm |
|
7.49 kg / 16.50 lbs
7485.0 g / 73.4 N
|
| 5 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 10 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 11 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 12 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 24x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
OK |
| 40 °C | -2.2% |
9.76 kg / 21.52 lbs
9760.4 g / 95.7 N
|
OK |
| 60 °C | -4.4% |
9.54 kg / 21.03 lbs
9540.9 g / 93.6 N
|
|
| 80 °C | -6.6% |
9.32 kg / 20.55 lbs
9321.3 g / 91.4 N
|
|
| 100 °C | -28.8% |
7.11 kg / 15.67 lbs
7105.8 g / 69.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 24x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.42 kg / 47.22 lbs
4 381 Gs
|
3.21 kg / 7.08 lbs
3213 g / 31.5 N
|
N/A |
| 1 mm |
20.25 kg / 44.65 lbs
5 390 Gs
|
3.04 kg / 6.70 lbs
3038 g / 29.8 N
|
18.23 kg / 40.19 lbs
~0 Gs
|
| 2 mm |
18.99 kg / 41.86 lbs
5 218 Gs
|
2.85 kg / 6.28 lbs
2848 g / 27.9 N
|
17.09 kg / 37.67 lbs
~0 Gs
|
| 3 mm |
17.67 kg / 38.95 lbs
5 034 Gs
|
2.65 kg / 5.84 lbs
2650 g / 26.0 N
|
15.90 kg / 35.06 lbs
~0 Gs
|
| 5 mm |
15.00 kg / 33.07 lbs
4 638 Gs
|
2.25 kg / 4.96 lbs
2250 g / 22.1 N
|
13.50 kg / 29.76 lbs
~0 Gs
|
| 10 mm |
9.09 kg / 20.03 lbs
3 610 Gs
|
1.36 kg / 3.00 lbs
1363 g / 13.4 N
|
8.18 kg / 18.03 lbs
~0 Gs
|
| 20 mm |
2.74 kg / 6.04 lbs
1 982 Gs
|
0.41 kg / 0.91 lbs
411 g / 4.0 N
|
2.46 kg / 5.43 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.23 lbs
385 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.21 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.10 lbs
251 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
171 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
121 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
89 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
67 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 24x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 24x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.05 km/h
(6.68 m/s)
|
0.45 J | |
| 30 mm |
38.72 km/h
(10.76 m/s)
|
1.18 J | |
| 50 mm |
49.93 km/h
(13.87 m/s)
|
1.96 J | |
| 100 mm |
70.61 km/h
(19.61 m/s)
|
3.92 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 24x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
Tabela 10: Dane elektryczne (Pc)
MW 24x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 932 Mx | 139.3 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 24x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.98 kg | Standard |
| Woda (dno rzeki) |
11.43 kg
(+1.45 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi jedynie ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- z powierzchnią oczyszczoną i gładką
- przy całkowitym braku odstępu (brak farby)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans (między magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Zagrożenie życia
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Ostrzeżenie dla alergików
Część populacji posiada uczulenie na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać zaczerwienienie skóry. Sugerujemy noszenie rękawic bezlateksowych.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Nie dawać dzieciom
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
