MW 24x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010048
GTIN/EAN: 5906301810476
Średnica Ø
24 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
20.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.98 kg / 97.88 N
Indukcja magnetyczna
277.18 mT / 2772 Gs
Powłoka
[Zn] cynk
5.10 ZŁ z VAT / szt. + cena za transport
4.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz jaki magnes kupić?
Dzwoń do nas
+48 888 99 98 98
lub pisz przez
formularz zapytania
w sekcji kontakt.
Właściwości i kształt elementów magnetycznych skontrolujesz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
MW 24x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 24x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010048 |
| GTIN/EAN | 5906301810476 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 24 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 20.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.98 kg / 97.88 N |
| Indukcja magnetyczna ~ ? | 277.18 mT / 2772 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - raport
Przedstawione informacje stanowią wynik kalkulacji matematycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MW 24x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
9.98 kg / 9980.0 g
97.9 N
|
mocny |
| 1 mm |
2609 Gs
260.9 mT
|
8.85 kg / 8846.4 g
86.8 N
|
mocny |
| 2 mm |
2420 Gs
242.0 mT
|
7.61 kg / 7609.6 g
74.7 N
|
mocny |
| 3 mm |
2216 Gs
221.6 mT
|
6.38 kg / 6383.0 g
62.6 N
|
mocny |
| 5 mm |
1805 Gs
180.5 mT
|
4.23 kg / 4233.2 g
41.5 N
|
mocny |
| 10 mm |
991 Gs
99.1 mT
|
1.28 kg / 1275.9 g
12.5 N
|
słaby uchwyt |
| 15 mm |
542 Gs
54.2 mT
|
0.38 kg / 381.4 g
3.7 N
|
słaby uchwyt |
| 20 mm |
313 Gs
31.3 mT
|
0.13 kg / 127.2 g
1.2 N
|
słaby uchwyt |
| 30 mm |
125 Gs
12.5 mT
|
0.02 kg / 20.4 g
0.2 N
|
słaby uchwyt |
| 50 mm |
34 Gs
3.4 mT
|
0.00 kg / 1.5 g
0.0 N
|
słaby uchwyt |
MW 24x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.00 kg / 1996.0 g
19.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 1770.0 g
17.4 N
|
| 2 mm | Stal (~0.2) |
1.52 kg / 1522.0 g
14.9 N
|
| 3 mm | Stal (~0.2) |
1.28 kg / 1276.0 g
12.5 N
|
| 5 mm | Stal (~0.2) |
0.85 kg / 846.0 g
8.3 N
|
| 10 mm | Stal (~0.2) |
0.26 kg / 256.0 g
2.5 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 76.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 24x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.99 kg / 2994.0 g
29.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.00 kg / 1996.0 g
19.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.00 kg / 998.0 g
9.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.99 kg / 4990.0 g
49.0 N
|
MW 24x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.00 kg / 998.0 g
9.8 N
|
| 1 mm |
|
2.50 kg / 2495.0 g
24.5 N
|
| 2 mm |
|
4.99 kg / 4990.0 g
49.0 N
|
| 5 mm |
|
9.98 kg / 9980.0 g
97.9 N
|
| 10 mm |
|
9.98 kg / 9980.0 g
97.9 N
|
MW 24x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.98 kg / 9980.0 g
97.9 N
|
OK |
| 40 °C | -2.2% |
9.76 kg / 9760.4 g
95.7 N
|
OK |
| 60 °C | -4.4% |
9.54 kg / 9540.9 g
93.6 N
|
|
| 80 °C | -6.6% |
9.32 kg / 9321.3 g
91.4 N
|
|
| 100 °C | -28.8% |
7.11 kg / 7105.8 g
69.7 N
|
MW 24x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
21.42 kg / 21419 g
210.1 N
4 381 Gs
|
N/A |
| 1 mm |
20.25 kg / 20254 g
198.7 N
5 390 Gs
|
18.23 kg / 18229 g
178.8 N
~0 Gs
|
| 2 mm |
18.99 kg / 18986 g
186.3 N
5 218 Gs
|
17.09 kg / 17087 g
167.6 N
~0 Gs
|
| 3 mm |
17.67 kg / 17669 g
173.3 N
5 034 Gs
|
15.90 kg / 15902 g
156.0 N
~0 Gs
|
| 5 mm |
15.00 kg / 15001 g
147.2 N
4 638 Gs
|
13.50 kg / 13501 g
132.4 N
~0 Gs
|
| 10 mm |
9.09 kg / 9085 g
89.1 N
3 610 Gs
|
8.18 kg / 8177 g
80.2 N
~0 Gs
|
| 20 mm |
2.74 kg / 2738 g
26.9 N
1 982 Gs
|
2.46 kg / 2464 g
24.2 N
~0 Gs
|
| 50 mm |
0.10 kg / 103 g
1.0 N
385 Gs
|
0.09 kg / 93 g
0.9 N
~0 Gs
|
MW 24x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 24x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.05 km/h
(6.68 m/s)
|
0.45 J | |
| 30 mm |
38.72 km/h
(10.76 m/s)
|
1.18 J | |
| 50 mm |
49.93 km/h
(13.87 m/s)
|
1.96 J | |
| 100 mm |
70.61 km/h
(19.61 m/s)
|
3.92 J |
MW 24x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
MW 24x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 932 Mx | 139.3 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
MW 24x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.98 kg | Standard |
| Woda (dno rzeki) |
11.43 kg
(+1.45 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, pełniącej rolę idealny przewodnik strumienia
- której wymiar poprzeczny to min. 10 mm
- o wypolerowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość blachy – za chuda płyta nie zamyka strumienia, przez co część mocy jest tracona na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i udźwig.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Temperatura pracy
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Nie zbliżaj do komputera
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Niklowa powłoka a alergia
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Zakaz zabawy
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Siła neodymu
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Ostrzeżenie dla sercowców
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
