MW 24x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010048
GTIN/EAN: 5906301810476
Średnica Ø
24 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
20.36 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.98 kg / 97.88 N
Indukcja magnetyczna
277.18 mT / 2772 Gs
Powłoka
[Zn] cynk
5.10 ZŁ z VAT / szt. + cena za transport
4.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie pisz poprzez
formularz zgłoszeniowy
na stronie kontakt.
Moc i formę magnesów obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MW 24x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 24x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010048 |
| GTIN/EAN | 5906301810476 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 24 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 20.36 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.98 kg / 97.88 N |
| Indukcja magnetyczna ~ ? | 277.18 mT / 2772 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Przedstawione informacje są rezultat analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 24x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
uwaga |
| 1 mm |
2609 Gs
260.9 mT
|
8.85 kg / 19.50 lbs
8846.4 g / 86.8 N
|
uwaga |
| 2 mm |
2420 Gs
242.0 mT
|
7.61 kg / 16.78 lbs
7609.6 g / 74.7 N
|
uwaga |
| 3 mm |
2216 Gs
221.6 mT
|
6.38 kg / 14.07 lbs
6383.0 g / 62.6 N
|
uwaga |
| 5 mm |
1805 Gs
180.5 mT
|
4.23 kg / 9.33 lbs
4233.2 g / 41.5 N
|
uwaga |
| 10 mm |
991 Gs
99.1 mT
|
1.28 kg / 2.81 lbs
1275.9 g / 12.5 N
|
bezpieczny |
| 15 mm |
542 Gs
54.2 mT
|
0.38 kg / 0.84 lbs
381.4 g / 3.7 N
|
bezpieczny |
| 20 mm |
313 Gs
31.3 mT
|
0.13 kg / 0.28 lbs
127.2 g / 1.2 N
|
bezpieczny |
| 30 mm |
125 Gs
12.5 mT
|
0.02 kg / 0.04 lbs
20.4 g / 0.2 N
|
bezpieczny |
| 50 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 24x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.90 lbs
1770.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.52 kg / 3.36 lbs
1522.0 g / 14.9 N
|
| 3 mm | Stal (~0.2) |
1.28 kg / 2.81 lbs
1276.0 g / 12.5 N
|
| 5 mm | Stal (~0.2) |
0.85 kg / 1.87 lbs
846.0 g / 8.3 N
|
| 10 mm | Stal (~0.2) |
0.26 kg / 0.56 lbs
256.0 g / 2.5 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 24x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.99 kg / 6.60 lbs
2994.0 g / 29.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.00 kg / 4.40 lbs
1996.0 g / 19.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 24x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
| 1 mm |
|
2.50 kg / 5.50 lbs
2495.0 g / 24.5 N
|
| 2 mm |
|
4.99 kg / 11.00 lbs
4990.0 g / 49.0 N
|
| 3 mm |
|
7.49 kg / 16.50 lbs
7485.0 g / 73.4 N
|
| 5 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 10 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 11 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
| 12 mm |
|
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 24x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.98 kg / 22.00 lbs
9980.0 g / 97.9 N
|
OK |
| 40 °C | -2.2% |
9.76 kg / 21.52 lbs
9760.4 g / 95.7 N
|
OK |
| 60 °C | -4.4% |
9.54 kg / 21.03 lbs
9540.9 g / 93.6 N
|
|
| 80 °C | -6.6% |
9.32 kg / 20.55 lbs
9321.3 g / 91.4 N
|
|
| 100 °C | -28.8% |
7.11 kg / 15.67 lbs
7105.8 g / 69.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 24x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.42 kg / 47.22 lbs
4 381 Gs
|
3.21 kg / 7.08 lbs
3213 g / 31.5 N
|
N/A |
| 1 mm |
20.25 kg / 44.65 lbs
5 390 Gs
|
3.04 kg / 6.70 lbs
3038 g / 29.8 N
|
18.23 kg / 40.19 lbs
~0 Gs
|
| 2 mm |
18.99 kg / 41.86 lbs
5 218 Gs
|
2.85 kg / 6.28 lbs
2848 g / 27.9 N
|
17.09 kg / 37.67 lbs
~0 Gs
|
| 3 mm |
17.67 kg / 38.95 lbs
5 034 Gs
|
2.65 kg / 5.84 lbs
2650 g / 26.0 N
|
15.90 kg / 35.06 lbs
~0 Gs
|
| 5 mm |
15.00 kg / 33.07 lbs
4 638 Gs
|
2.25 kg / 4.96 lbs
2250 g / 22.1 N
|
13.50 kg / 29.76 lbs
~0 Gs
|
| 10 mm |
9.09 kg / 20.03 lbs
3 610 Gs
|
1.36 kg / 3.00 lbs
1363 g / 13.4 N
|
8.18 kg / 18.03 lbs
~0 Gs
|
| 20 mm |
2.74 kg / 6.04 lbs
1 982 Gs
|
0.41 kg / 0.91 lbs
411 g / 4.0 N
|
2.46 kg / 5.43 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.23 lbs
385 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.2 N
|
0.09 kg / 0.21 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.10 lbs
251 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
171 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
121 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
89 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
67 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 24x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 24x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.05 km/h
(6.68 m/s)
|
0.45 J | |
| 30 mm |
38.72 km/h
(10.76 m/s)
|
1.18 J | |
| 50 mm |
49.93 km/h
(13.87 m/s)
|
1.96 J | |
| 100 mm |
70.61 km/h
(19.61 m/s)
|
3.92 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 24x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
Tabela 10: Dane elektryczne (Pc)
MW 24x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 932 Mx | 139.3 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 24x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.98 kg | Standard |
| Woda (dno rzeki) |
11.43 kg
(+1.45 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- z zastosowaniem podłoża ze miękkiej stali, która służy jako idealny przewodnik strumienia
- której grubość sięga przynajmniej 10 mm
- z powierzchnią wolną od rys
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy pionowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Trwała utrata siły
Standardowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie wybuchem pyłu
Proszek powstający podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Ryzyko pęknięcia
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Ryzyko uczulenia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Produkt nie dla dzieci
Magnesy neodymowe nie służą do zabawy. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Urazy ciała
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
