MW 21.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010045
GTIN/EAN: 5906301810445
Średnica Ø
21.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
28.25 g
Kierunek magnesowania
→ diametralny
Udźwig
14.65 kg / 143.71 N
Indukcja magnetyczna
417.89 mT / 4179 Gs
Powłoka
[NiCuNi] nikiel
15.50 ZŁ z VAT / szt. + cena za transport
12.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie zostaw wiadomość korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Właściwości oraz formę elementów magnetycznych zobaczysz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 21.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 21.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010045 |
| GTIN/EAN | 5906301810445 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 21.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 28.25 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 14.65 kg / 143.71 N |
| Indukcja magnetyczna ~ ? | 417.89 mT / 4179 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 21.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4178 Gs
417.8 mT
|
14.65 kg / 14650.0 g
143.7 N
|
niebezpieczny! |
| 1 mm |
3830 Gs
383.0 mT
|
12.31 kg / 12314.7 g
120.8 N
|
niebezpieczny! |
| 2 mm |
3466 Gs
346.6 mT
|
10.08 kg / 10083.5 g
98.9 N
|
niebezpieczny! |
| 3 mm |
3104 Gs
310.4 mT
|
8.09 kg / 8086.3 g
79.3 N
|
mocny |
| 5 mm |
2432 Gs
243.2 mT
|
4.97 kg / 4966.5 g
48.7 N
|
mocny |
| 10 mm |
1257 Gs
125.7 mT
|
1.33 kg / 1327.0 g
13.0 N
|
niskie ryzyko |
| 15 mm |
671 Gs
67.1 mT
|
0.38 kg / 378.5 g
3.7 N
|
niskie ryzyko |
| 20 mm |
386 Gs
38.6 mT
|
0.13 kg / 125.0 g
1.2 N
|
niskie ryzyko |
| 30 mm |
156 Gs
15.6 mT
|
0.02 kg / 20.4 g
0.2 N
|
niskie ryzyko |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 1.5 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 21.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.93 kg / 2930.0 g
28.7 N
|
| 1 mm | Stal (~0.2) |
2.46 kg / 2462.0 g
24.2 N
|
| 2 mm | Stal (~0.2) |
2.02 kg / 2016.0 g
19.8 N
|
| 3 mm | Stal (~0.2) |
1.62 kg / 1618.0 g
15.9 N
|
| 5 mm | Stal (~0.2) |
0.99 kg / 994.0 g
9.8 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 266.0 g
2.6 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 76.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 21.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.40 kg / 4395.0 g
43.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.93 kg / 2930.0 g
28.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.47 kg / 1465.0 g
14.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.33 kg / 7325.0 g
71.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 21.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 732.5 g
7.2 N
|
| 1 mm |
|
1.83 kg / 1831.3 g
18.0 N
|
| 2 mm |
|
3.66 kg / 3662.5 g
35.9 N
|
| 5 mm |
|
9.16 kg / 9156.3 g
89.8 N
|
| 10 mm |
|
14.65 kg / 14650.0 g
143.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 21.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.65 kg / 14650.0 g
143.7 N
|
OK |
| 40 °C | -2.2% |
14.33 kg / 14327.7 g
140.6 N
|
OK |
| 60 °C | -4.4% |
14.01 kg / 14005.4 g
137.4 N
|
|
| 80 °C | -6.6% |
13.68 kg / 13683.1 g
134.2 N
|
|
| 100 °C | -28.8% |
10.43 kg / 10430.8 g
102.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 21.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
40.53 kg / 40529 g
397.6 N
5 433 Gs
|
N/A |
| 1 mm |
37.31 kg / 37311 g
366.0 N
8 017 Gs
|
33.58 kg / 33580 g
329.4 N
~0 Gs
|
| 2 mm |
34.07 kg / 34068 g
334.2 N
7 660 Gs
|
30.66 kg / 30661 g
300.8 N
~0 Gs
|
| 3 mm |
30.92 kg / 30916 g
303.3 N
7 297 Gs
|
27.82 kg / 27824 g
273.0 N
~0 Gs
|
| 5 mm |
25.04 kg / 25040 g
245.6 N
6 567 Gs
|
22.54 kg / 22536 g
221.1 N
~0 Gs
|
| 10 mm |
13.74 kg / 13740 g
134.8 N
4 865 Gs
|
12.37 kg / 12366 g
121.3 N
~0 Gs
|
| 20 mm |
3.67 kg / 3671 g
36.0 N
2 515 Gs
|
3.30 kg / 3304 g
32.4 N
~0 Gs
|
| 50 mm |
0.13 kg / 132 g
1.3 N
476 Gs
|
0.12 kg / 118 g
1.2 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 21.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 21.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.23 km/h
(6.73 m/s)
|
0.64 J | |
| 30 mm |
39.81 km/h
(11.06 m/s)
|
1.73 J | |
| 50 mm |
51.36 km/h
(14.27 m/s)
|
2.87 J | |
| 100 mm |
72.63 km/h
(20.17 m/s)
|
5.75 J |
Tabela 9: Parametry powłoki (trwałość)
MW 21.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 21.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 059 Mx | 160.6 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 21.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.65 kg | Standard |
| Woda (dno rzeki) |
16.77 kg
(+2.12 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- przy całkowitym braku odstępu (brak powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Samozapłon
Proszek powstający podczas obróbki magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nośniki danych
Bardzo silne oddziaływanie może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Reakcje alergiczne
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Uwaga: zadławienie
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Poważne obrażenia
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni między dwa silne magnesy.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Uwaga na odpryski
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Ostrzeżenie dla sercowców
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
