MW 19x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010038
GTIN/EAN: 5906301810377
Średnica Ø
19 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
8.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.96 kg / 48.62 N
Indukcja magnetyczna
240.51 mT / 2405 Gs
Powłoka
[Zn] cynk
4.80 ZŁ z VAT / szt. + cena za transport
3.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub skontaktuj się korzystając z
formularz
na stronie kontaktowej.
Udźwig a także budowę magnesów sprawdzisz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MW 19x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 19x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010038 |
| GTIN/EAN | 5906301810377 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 19 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 8.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.96 kg / 48.62 N |
| Indukcja magnetyczna ~ ? | 240.51 mT / 2405 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Niniejsze wartości stanowią wynik analizy inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 19x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2405 Gs
240.5 mT
|
4.96 kg / 4960.0 g
48.7 N
|
uwaga |
| 1 mm |
2239 Gs
223.9 mT
|
4.30 kg / 4299.0 g
42.2 N
|
uwaga |
| 2 mm |
2033 Gs
203.3 mT
|
3.55 kg / 3547.4 g
34.8 N
|
uwaga |
| 3 mm |
1811 Gs
181.1 mT
|
2.81 kg / 2813.0 g
27.6 N
|
uwaga |
| 5 mm |
1376 Gs
137.6 mT
|
1.63 kg / 1625.2 g
15.9 N
|
słaby uchwyt |
| 10 mm |
635 Gs
63.5 mT
|
0.35 kg / 346.3 g
3.4 N
|
słaby uchwyt |
| 15 mm |
308 Gs
30.8 mT
|
0.08 kg / 81.2 g
0.8 N
|
słaby uchwyt |
| 20 mm |
164 Gs
16.4 mT
|
0.02 kg / 23.2 g
0.2 N
|
słaby uchwyt |
| 30 mm |
61 Gs
6.1 mT
|
0.00 kg / 3.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 19x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.99 kg / 992.0 g
9.7 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 860.0 g
8.4 N
|
| 2 mm | Stal (~0.2) |
0.71 kg / 710.0 g
7.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 562.0 g
5.5 N
|
| 5 mm | Stal (~0.2) |
0.33 kg / 326.0 g
3.2 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 70.0 g
0.7 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 19x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.49 kg / 1488.0 g
14.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.99 kg / 992.0 g
9.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.50 kg / 496.0 g
4.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.48 kg / 2480.0 g
24.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 19x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.50 kg / 496.0 g
4.9 N
|
| 1 mm |
|
1.24 kg / 1240.0 g
12.2 N
|
| 2 mm |
|
2.48 kg / 2480.0 g
24.3 N
|
| 5 mm |
|
4.96 kg / 4960.0 g
48.7 N
|
| 10 mm |
|
4.96 kg / 4960.0 g
48.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MW 19x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.96 kg / 4960.0 g
48.7 N
|
OK |
| 40 °C | -2.2% |
4.85 kg / 4850.9 g
47.6 N
|
OK |
| 60 °C | -4.4% |
4.74 kg / 4741.8 g
46.5 N
|
|
| 80 °C | -6.6% |
4.63 kg / 4632.6 g
45.4 N
|
|
| 100 °C | -28.8% |
3.53 kg / 3531.5 g
34.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 19x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
10.11 kg / 10106 g
99.1 N
3 990 Gs
|
N/A |
| 1 mm |
9.48 kg / 9475 g
93.0 N
4 657 Gs
|
8.53 kg / 8528 g
83.7 N
~0 Gs
|
| 2 mm |
8.76 kg / 8759 g
85.9 N
4 477 Gs
|
7.88 kg / 7884 g
77.3 N
~0 Gs
|
| 3 mm |
8.00 kg / 8001 g
78.5 N
4 279 Gs
|
7.20 kg / 7201 g
70.6 N
~0 Gs
|
| 5 mm |
6.47 kg / 6465 g
63.4 N
3 846 Gs
|
5.82 kg / 5819 g
57.1 N
~0 Gs
|
| 10 mm |
3.31 kg / 3311 g
32.5 N
2 753 Gs
|
2.98 kg / 2980 g
29.2 N
~0 Gs
|
| 20 mm |
0.71 kg / 706 g
6.9 N
1 271 Gs
|
0.64 kg / 635 g
6.2 N
~0 Gs
|
| 50 mm |
0.02 kg / 16 g
0.2 N
193 Gs
|
0.01 kg / 15 g
0.1 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 19x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 19x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.39 km/h
(7.05 m/s)
|
0.21 J | |
| 30 mm |
42.19 km/h
(11.72 m/s)
|
0.58 J | |
| 50 mm |
54.44 km/h
(15.12 m/s)
|
0.97 J | |
| 100 mm |
76.99 km/h
(21.39 m/s)
|
1.95 J |
Tabela 9: Odporność na korozję
MW 19x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
Tabela 10: Dane elektryczne (Flux)
MW 19x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 831 Mx | 78.3 µWb |
| Współczynnik Pc | 0.30 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 19x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.96 kg | Standard |
| Woda (dno rzeki) |
5.68 kg
(+0.72 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.30
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, Au, srebro) mają estetyczny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Dystans – występowanie ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca przy magnesach neodymowych
Ostrzeżenie dla alergików
Pewna grupa użytkowników posiada uczulenie na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może powodować wysypkę. Zalecamy noszenie rękawic bezlateksowych.
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Produkt nie dla dzieci
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Limity termiczne
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ochrona oczu
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Ogromna siła
Używaj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
