MW 19x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010038
GTIN/EAN: 5906301810377
Średnica Ø
19 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
8.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.96 kg / 48.62 N
Indukcja magnetyczna
240.51 mT / 2405 Gs
Powłoka
[Zn] cynk
4.80 ZŁ z VAT / szt. + cena za transport
3.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość przez
formularz
na stronie kontaktowej.
Masę a także wygląd magnesów obliczysz u nas w
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MW 19x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 19x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010038 |
| GTIN/EAN | 5906301810377 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 19 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 8.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.96 kg / 48.62 N |
| Indukcja magnetyczna ~ ? | 240.51 mT / 2405 Gs |
| Powłoka | [Zn] cynk |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Przedstawione informacje są rezultat symulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 19x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2405 Gs
240.5 mT
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
mocny |
| 1 mm |
2239 Gs
223.9 mT
|
4.30 kg / 9.48 lbs
4299.0 g / 42.2 N
|
mocny |
| 2 mm |
2033 Gs
203.3 mT
|
3.55 kg / 7.82 lbs
3547.4 g / 34.8 N
|
mocny |
| 3 mm |
1811 Gs
181.1 mT
|
2.81 kg / 6.20 lbs
2813.0 g / 27.6 N
|
mocny |
| 5 mm |
1376 Gs
137.6 mT
|
1.63 kg / 3.58 lbs
1625.2 g / 15.9 N
|
bezpieczny |
| 10 mm |
635 Gs
63.5 mT
|
0.35 kg / 0.76 lbs
346.3 g / 3.4 N
|
bezpieczny |
| 15 mm |
308 Gs
30.8 mT
|
0.08 kg / 0.18 lbs
81.2 g / 0.8 N
|
bezpieczny |
| 20 mm |
164 Gs
16.4 mT
|
0.02 kg / 0.05 lbs
23.2 g / 0.2 N
|
bezpieczny |
| 30 mm |
61 Gs
6.1 mT
|
0.00 kg / 0.01 lbs
3.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 19x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.99 kg / 2.19 lbs
992.0 g / 9.7 N
|
| 1 mm | Stal (~0.2) |
0.86 kg / 1.90 lbs
860.0 g / 8.4 N
|
| 2 mm | Stal (~0.2) |
0.71 kg / 1.57 lbs
710.0 g / 7.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
562.0 g / 5.5 N
|
| 5 mm | Stal (~0.2) |
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 19x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.49 kg / 3.28 lbs
1488.0 g / 14.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.99 kg / 2.19 lbs
992.0 g / 9.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.50 kg / 1.09 lbs
496.0 g / 4.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.48 kg / 5.47 lbs
2480.0 g / 24.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 19x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.50 kg / 1.09 lbs
496.0 g / 4.9 N
|
| 1 mm |
|
1.24 kg / 2.73 lbs
1240.0 g / 12.2 N
|
| 2 mm |
|
2.48 kg / 5.47 lbs
2480.0 g / 24.3 N
|
| 3 mm |
|
3.72 kg / 8.20 lbs
3720.0 g / 36.5 N
|
| 5 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
| 10 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
| 11 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
| 12 mm |
|
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 19x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.96 kg / 10.93 lbs
4960.0 g / 48.7 N
|
OK |
| 40 °C | -2.2% |
4.85 kg / 10.69 lbs
4850.9 g / 47.6 N
|
OK |
| 60 °C | -4.4% |
4.74 kg / 10.45 lbs
4741.8 g / 46.5 N
|
|
| 80 °C | -6.6% |
4.63 kg / 10.21 lbs
4632.6 g / 45.4 N
|
|
| 100 °C | -28.8% |
3.53 kg / 7.79 lbs
3531.5 g / 34.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 19x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.11 kg / 22.28 lbs
3 990 Gs
|
1.52 kg / 3.34 lbs
1516 g / 14.9 N
|
N/A |
| 1 mm |
9.48 kg / 20.89 lbs
4 657 Gs
|
1.42 kg / 3.13 lbs
1421 g / 13.9 N
|
8.53 kg / 18.80 lbs
~0 Gs
|
| 2 mm |
8.76 kg / 19.31 lbs
4 477 Gs
|
1.31 kg / 2.90 lbs
1314 g / 12.9 N
|
7.88 kg / 17.38 lbs
~0 Gs
|
| 3 mm |
8.00 kg / 17.64 lbs
4 279 Gs
|
1.20 kg / 2.65 lbs
1200 g / 11.8 N
|
7.20 kg / 15.88 lbs
~0 Gs
|
| 5 mm |
6.47 kg / 14.25 lbs
3 846 Gs
|
0.97 kg / 2.14 lbs
970 g / 9.5 N
|
5.82 kg / 12.83 lbs
~0 Gs
|
| 10 mm |
3.31 kg / 7.30 lbs
2 753 Gs
|
0.50 kg / 1.10 lbs
497 g / 4.9 N
|
2.98 kg / 6.57 lbs
~0 Gs
|
| 20 mm |
0.71 kg / 1.56 lbs
1 271 Gs
|
0.11 kg / 0.23 lbs
106 g / 1.0 N
|
0.64 kg / 1.40 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
193 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
121 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
81 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
56 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 19x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 19x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.39 km/h
(7.05 m/s)
|
0.21 J | |
| 30 mm |
42.19 km/h
(11.72 m/s)
|
0.58 J | |
| 50 mm |
54.44 km/h
(15.12 m/s)
|
0.97 J | |
| 100 mm |
76.99 km/h
(21.39 m/s)
|
1.95 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 19x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [Zn] cynk |
| Struktura warstw | Zn (Cynk) |
| Grubość warstwy | 8-15 µm |
| Test mgły solnej (SST) ? | 48 h |
| Zalecane środowisko | Wnętrza / Garaż |
Tabela 10: Dane konstrukcyjne (Pc)
MW 19x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 831 Mx | 78.3 µWb |
| Współczynnik Pc | 0.30 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 19x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.96 kg | Standard |
| Woda (dno rzeki) |
5.68 kg
(+0.72 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.30
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy zastosowaniu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny to min. 10 mm
- o szlifowanej powierzchni kontaktu
- przy zerowej szczelinie (brak zanieczyszczeń)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Interferencja medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Zagrożenie zapłonem
Proszek powstający podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Urządzenia elektroniczne
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Chronić przed dziećmi
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Kruchy spiek
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Kompas i GPS
Pamiętaj: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Maksymalna temperatura
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Uczulenie na powłokę
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Rekomendujemy stosowanie rękawiczek ochronnych.
